Gas Migration Modeling to Prevent Sustained Casing Pressure and Casing Vent Flow

Author:

Vu Manh-Huyen1,Bois Axel-Pierre1,Badalamenti Anthony1

Affiliation:

1. CURISTEC

Abstract

Abstract One of the main objectives of primary cementing is to provide zonal isolation by preventing the percolation of gas through a cemented annulus, which could result in channels in the cement sheath. Gas channeling, once established, has proven to be extremely difficult and costly to repair. The most current theory used to explain gas migration is the early gelation of the cement slurry, which leads to a decrease of hydrostatic pressure within the cement annulus. Over the years, various models have been developed, most of them revolve around the concepts of static gel strength (SGS), critical static gel strength, (CSGS), and transition time. Unfortunately, these approaches have failed to accurately predict gas migration. One of the main reasons for this failure is that these approaches are based on fluid-mechanics theories, and do not take into account the cement phase changes during hydration (fluid to solid) besides their effects on the SGS. Additionally, most models do not take into account the true mechanisms at the origin of gas percolation: Matrix, chimney, and micro-annulus. This paper presents the use of a new gas migration model that eliminates these drawbacks, in order to investigate the effect of the cement composition on the cement sheath integrity. This model considers two different stages in the life of the cement sheath (fluid-type and porous-solid type), and is characterized by constitutive laws, which are integrated over the length of the cement column by time to determine if gas migration will occur and what are the mechanisms according to which it would occur. The simulations demonstrate the crucial role that the cement composition has on the state of stresses and pore pressure in the cement sheath, on the opening and closure of micro-annuli and on the vertical displacements of cement sheath during cement early ages. They highlight that an analysis of cement sheath integrity during hydration requires checking a combination of different mechanisms during the life of cement from fluid-type to porous-solid type.

Publisher

SPE

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3