Optimization Study of a Novel Water-Ionic Technology for Smart-Waterflooding Application in Carbonate Reservoirs

Author:

Yousef Ali1,Ayirala Subhash2

Affiliation:

1. Aramco

2. Saudi Aramco/ASC

Abstract

Summary Injection water with selective ionic content and composition is a key requirement for smart-waterflooding (SWF) application in carbonate reservoirs. Smart water--depleted in monovalent ions, but enriched in sulfates and divalent cations--is desired for incremental oil recovery in carbonates, which constitute complex water chemistry when compared with sandstones. Most of the published work available in this area is focused on addressing water-chemistry requirements for low-salinity waterflooding in sandstones. However, none of these studies describes the complex injection-water requirements of SWF in carbonate reservoirs. Also, injection-water chemistry has a known impact on several tertiary enhanced-oil-recovery (EOR) processes among the three major categories of chemical, gas, and thermal EOR. The main purpose of this study is, therefore, to identify and optimize a novel water-ionic technology that can serve as a “one-shop solution” to generate desired water chemistries suited for different improved-oil-recovery (IOR)/EOR processes, including SWF in carbonates. A novel water-ionic technology, comprising nanofiltration and reverse-osmosis membrane-based processes, was identified for optimization in this study. The proposed technology makes use of these two membrane-desalination processes in parallel configuration to provide multiple water streams of widely varying ionic strength and content. Different water streams obtained from this novel solution can be blended effectively to yield a smart-water cocktail of desired ionic strength, composition, and monovalent- to divalent-ion content suited for carbonates. Smart-water cocktails obtained from the proposed solution are also suited for application in other EOR processes such as polymer flooding, alkaline/surfactant/polymer flooding, low-salinity surfactant flooding, dilute surfactant flooding, carbonated waterflooding, and miscible gasflooding, and are suited for boiler feedwater in steamflooding. The optimized scheme thereby offers a novel one-shop solution to meet the complete suite of desired water-chemistry requirements for different IOR/EOR processes. In addition, comparative evaluation-study results between novel water-ionic technology and other already-known advanced-desalination schemes highlight the major advantages of the new solution in terms of better water-ion-tuning flexibility, higher recovery efficiency, lower energy requirement/footprint, and ease of operation.

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3