Using Artificial Intelligence to Corellate Multiple Seismic Attributes to Reservoir Properties

Author:

Balch R.S.1,Stubbs B.S.2,Weiss W.W.,Wo S.1

Affiliation:

1. New Mexico Petroleum Recovery Research Center

2. Pecos Petroleum Engineering

Abstract

Abstract Well data gives precise information on reservoir properties at specific field locations with high vertical resolution. 3D seismic surveys cover large areas of the field but reservoir properties are not directly observable due to poor vertical resolution. For this paper, a new methodology has been developed and tested for relating reservoir properties at the well-bore to sets of seismic attributes, in order to predict reservoir properties in two zones of the Nash Draw field in SE New Mexico. Over 350 seismic attributes can be used in regression analyses of reservoir properties. Since using all attributes is computationally unfeasible and labor intensive, fuzzy logic is used to select the most statistically significant attributes for developing regression equations for individual reservoir properties. Non-linear regressions were used, as individual attributes had low correlation coefficients when cross-plotted with reservoir properties, and neural network architectures were developed to relate the selected attributes to each property. In each case the output data used for training was a reservoir property, porosity (f), water saturation(Sw), or net pay, from 19 wells in the field. Each property was estimated using a neural network trained to CC = 0.8 or higher using the highest ranking seismic attributes as inputs. The validity of the solutions were tested by removing three wells from the training data, re-computing the weights, and predicting the three absent points. These tests were applied three times for each reservoir property, with different points removed. Each network accurately predicted these nine test points and the solutions are considered robust. f, Sw, and net pay maps were generated using the regression relationships and the seismic attributes at each seismic bin location. Pore volume (fh) and hydrocarbon pore volume (hfSo) maps were derived from those reservoir property maps. These new techniques maximize both the well control and seismic data and generated useful maps for targeted drilling programs in the field.

Publisher

SPE

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3