Development of a Multi-Completion Gas and Downhole Water Sink-Assisted Gravity Drainage (MC-DWS-AGD) to Improve Oil Recovery and Reduce Water Cut in Reservoirs with Strong Water Aquifers

Author:

Al-Obaidi Dahlia A.1,Wood David A.2,Al-Mudhafar Watheq J.3,Wojtanowicz Andrew A.4,Merzoug Ahmed5

Affiliation:

1. University of Baghdad

2. DWA Energy Limited

3. Basrah Oil Company

4. Louisiana State University

5. Texas A&M University

Abstract

AbstractGas and downhole water sink assisted gravity drainage (GDWS-AGD) is a promising gas-based enhanced oil recovery (EOR) process applicable for reservoirs associated with infinite aquifers. However, it can be costly to implement because it typically involves the drilling of multiple vertical gas-injection wells. The drilling and well-completion costs can be substantially reduced by using additional completions for gas injection in the oil production wells through the annulus positioned at the top of the reservoir. Multi-completion-GDWS-AGD (MC-GDWS-AGD) can be configured to include separate completions for gas injection, oil, and water production in individual wells. This study simulates the MC-GDWS-AGD process applied to the synthetic reservoir (PUNQ-S3, based on a real North Sea Field) by placing multiple completions in two wells, which include a gas injection loop, and 2-horizontal wells with a diameter of 2⅜ inch, first one for producing oil located above the oil/water contact and the second one for water sink placed below the oil/water contact. Hydraulic packers are positioned to isolate the multiple completions and an electric submersible pump are positioned to produce the water zone. These results compare to a base case involving no MC-GDWS-AGD wells, which achieved 55.5% oil recovery and 70% water cut.

Publisher

SPE

Reference21 articles.

1. Water Control Management Utilizing Downhole Water Sink Technology: Application of a Reservoir in the Middle East;Al-Azmi,2017

2. Designing a simultaneous water alternating gas process for optimizing oil recovery;Al-Ghanim,2009

3. Lessons learned from the field-scale simulation of the gas-assisted gravity drainage GAGD process in heterogeneous sandstone oil reservoirs;Al-Mudhafar,2017

4. Optimization of Gas Assisted Gravity Drainage (GAGD) Process in a Heterogeneous Sandstone Reservoir: Field-Scale Study;Al-Mudhafar,2015

5. Proxy-based metamodeling optimization of the gas-assisted gravity drainage GAGD process in heterogeneous sandstone reservoirs;Al-Mudhafar,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3