Test Results Field & Lab for a New Composite Perforating Method that Integrates Propellant and Shaped Charges

Author:

Albert Larry1

Affiliation:

1. Horizontal Wireline Services

Abstract

Abstract A new perforating technique employing the integration of conventional shaped charges and solid propellant was described by Albert, et.al. (SPE 197185-MS). The innovative propellant deployment method allows the propellant deflagration to occur in the perforation tunnel rather than gun body and casing, thus delivering maximum energy to improve perforation tunnel performance. Shaped charges utilizing high energy explosives perforate casing and formation with high speed metallic jets that displace by sheer force. The explosive events are fast (20-30 microseconds) high impact events (as high as 1.5 million psi at the rock face) that can collapse large pores in the formation along the surface of the perforation tunnel. This crushing along the tunnel reduces permeability and increases skin and can impact the flow of fluids into and out of the reservoir rock. A number of methods have been developed to improve perforation tunnel flow efficiency, but all suffered limits on either deployment or effectiveness. Propellants have been used for decades to improve perforation performance. Propellants are energetic materials with slower burn rates that can micro-fracture the formation and break-up the crushed zone around perforation tunnels. Prior methods deflagrated the propellant materials within the gun bodies, or casing and lost a significant amount of energy before delivering impact to the perforation tunnel. The new method with a composite cap of solid propellant on the face of the shaped charge, displaces the propellant into the perforation tunnel before deflagration, thus delivering maximum energy to the formation. This helps break up the crushed zone and micro-fracture the formation. The improved perforation tunnel will reduce frac fluid tortuosity. Frac jobs can get better fracture initiation and better proppant placement, resulting in better production. This paper will focus on additional lab testing at an Advanced Perforating Flow Laboratory plus several USA onshore completions (horizontal and vertical). The field data will show the effect of the composite perforation method on frac performance and well production.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3