Simultaneous Multifracture Treatments: Fully Coupled Fluid Flow and Fracture Mechanics for Horizontal Wells

Author:

Wu Kan1,Olson Jon E.1

Affiliation:

1. University of Texas at Austin

Abstract

Summary Successfully creating multiple hydraulic fractures in horizontal wells is critical for unconventional gas production economically. Optimizing the stimulation of these wells will require models that can account for the simultaneous propagation of multiple, potentially nonplanar, fractures. In this paper, a novel fracture-propagation model (FPM) is described that can simulate multiple-hydraulic-fracture propagation from a horizontal wellbore. The model couples fracture deformation with fluid flow in the fractures and the horizontal wellbore. The displacement discontinuity method (DDM) is used to represent the mechanics of the fractures and their opening, including interaction effects between closely spaced fractures. Fluid flow in the fractures is determined by the lubrication theory. Frictional pressure drop in the wellbore and perforation zones is taken into account by applying Kirchoff's first and second laws. The fluid-flow rates and pressure compatibility are maintained between the wellbore and the multiple fractures with Newton's numerical method. The model generates physically realistic multiple-fracture geometries and nonplanar-fracture trajectories that are consistent with physical-laboratory results and inferences drawn from microseismic diagnostic interpretations. One can use the simulation results of the FPM for sensitivity analysis of in-situ and fracture treatment parameters for shale-gas stimulation design. They provide a physics-based complex fracture network that one can import into reservoir-simulation models for production analysis. Furthermore, the results from the model can highlight conditions under which restricted width occurs that could lead to proppant screenout.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 308 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3