Quality Assurance and Quality Control of Surfactants for Field-Scale Enhanced-Oil-Recovery Pilot Projects

Author:

Barnes J. R.1,van Batenburg D. W.1,Faber M. J.1,van Rijn C. H.1,Geib S..1,van Kuijk S. R.1,Perez Regalado D..1,King T. E.2,Doll M. J.2,Crom L. E.2

Affiliation:

1. Shell Global Solutions International

2. Shell Global Solutions US

Abstract

Summary Alkaline/surfactant/polymer (ASP) flooding is an enhanced-oil-recovery (EOR) technique that involves the injection of a solution of surfactant, alkali, and polymer into an oil reservoir to mobilize and produce the remaining oil. There are several pattern-flood pilots in progress or that will soon be executed to evaluate ASP at a scale relevant to commercial-scale application. The quantities of surfactants needed for these pilots and potential future commercial-scale applications are large (hundreds to thousands of tonnes) and necessitate large-scale manufacture using existing processes and plants for the different manufacturing steps. These operate under slightly different process conditions than those used to make the smaller quantity (50 to 400 kg) of the reference blend used to design the formulation in the laboratory. The upscaling of the surfactant production itself is an essential step to enable field-scale implementation of ASP. To ensure and control the quality of the surfactants produced for pilots with Shell interests, a stage-gated quality assurance/quality control (QA/QC) program was designed and executed. The application of the QA/QC process for a high- and a low-active-matter surfactant-blend concentrate (approximately 60% and 20% active, respectively) is used to illustrate the process. The early definition of the QA/QC program provided a framework with clearly defined stages for upscaling from laboratory- to large-scale production. The definition of analytical and performance-based laboratory experiments with upfront-defined specifications (minimum and maximum values) and repeatability allowed for clear, unambiguous decisions. Correlations between composition and performance that were developed dependent on pilot-scale production were essential to assure the performance of the larger-scale production. Corefloods, used as the ultimate performance check, showed virtually identical performance for pilot-scale prepared surfactants and surfactants from different large-scale batches. The paper illustrates that consistent industrial-scale production of surfactants for application in chemical EOR (CEOR) is feasible. To ensure the quality of such surfactant requires a detailed QA/QC program. The successful execution of the QA/QC program for the surfactants for the pattern pilots ensures that the produced large-scale surfactant blend performs as the reference blend used to design the formulation.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3