Use of Inline Spinner for Determination of Zonal Flow Rates in Vertical and Moderately Deviated Wells

Author:

El-Sheikh Mahmoud I.1,El-Banbi Ahmed H.2

Affiliation:

1. Gulf of Suez Petroleum Company

2. The American University in Cairo

Abstract

Summary Accurate zonal flow rate determination is necessary for better reservoir behavior understanding and for making important decisions that can improve well productivity. Knowledge of the capabilities of different reservoir zones in the same well also has significant importance in reservoir performance monitoring and selection of perforation intervals in development wells. Conventional production log analysis techniques can usually yield good results only if the fullbore spinner readings are reliable. However, the fullbore spinner measurement may not be available in some wells. Examples include cases in which the fullbore spinner cannot access the well due to mechanical obstruction, or when the casing is not clean enough, causing potential plugging of fullbore spinner blades. In these situations, the fullbore flow-rate readings may not be available or at least unclear or confusing, which may lead to incorrect decisions. In many of these situations, inline spinner (ILS) data may be readily available. The ILS is often used for qualitative interpretation (i.e., determining which zones are producing), but there is not a specific method to use the ILS for a quantitative solution in the absence of surface measurements of rates. In this paper, we introduce a new method to calculate the volumetric zonal flow rate using ILS data with high accuracy. Approximately 40 oil wells are used to develop an empirical correlation to compute zonal flow rates from ILS data in casing strings. The new method was used to quantitatively interpret eight oil wells for validation. In these wells, fullbore and ILS data were significantly different. The new method for interpretation of ILS data provided results consistent with surface production tests and led to decisions that contributed to increasing production rates.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3