An Equation-of-State Model To Predict Surfactant/Oil/Brine-Phase Behavior

Author:

Ghosh S..1,Johns R. T.1

Affiliation:

1. Pennsylvania State University

Abstract

Summary Surfactant/polymer (SP) floods have significant potential to recover waterflood residual oil in shallow oil reservoirs. A thorough understanding of surfactant/oil/brine-phase behavior is critical to design SP-flood processes. Current practices involve repetitive laboratory experiments of dead crude at atmospheric pressure in a salinity scan that aims at finding an “optimum formulation” of chemicals for targeted oil reservoirs. Although considerable progress has been made in developing surfactants and polymers that increase the potential of a chemical enhanced-oil-recovery (EOR) project, very little progress has been made to predict phase behavior as a function of formulation variables such as pressure, temperature, and oil equivalent alkane carbon number (EACN). The empirical Hand (1930) plot is still used today to model the microemulsion-phase behavior with little predictive capability because these and other formulation variables change. Such models could lead to incorrect recovery predictions and improper SP-flood designs. In this research, we develop a new predictive-phase-behavior model and introduce a new factor β to account for pressure changes in the HLD equation. This new HLD equation is coupled with the net-average-curvature (NAC) model to predict phase volumes, solubilization ratios, and microemulsion-phase transitions (Winsor II–, Winsor III, and Winsor II+). The predictions of key parameters are compared with experimental data and are within relative errors of 4% (average 2.35%) for measured optimum salinities and 17% (average 10.55%) for optimum solubilization ratios. This paper is the first to use the HLD/NAC model to predict microemulsion-phase behavior for live crudes, including optimal solubilization ratio and the salinity width of the three-phase Winsor III region at different temperatures and pressures. Although the effect of pressure variations on microemulsion-phase behavior is generally thought to be small compared with temperature-induced changes, we show here that this is not necessarily the case. The predictive approach relies on tuning the model to limited experimental data (such as at atmospheric pressure) similar to what is performed for equation-of-state (EOS) modeling of miscible gasfloods. This new EOS-like model could significantly aid the design of chemical floods where key variables change dynamically, and in screening of potential candidate reservoirs for chemical EOR.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3