High-Precision Single-Leak Detection and Localization in Single-Phase Liquid Pipelines Using the Negative Pressure Wave Technique: An Application in a Real-Field Case Study

Author:

Fathi E.1ORCID,Adenan M. F.2ORCID,Moryan N.2ORCID,Belyadi F.3ORCID,Belyadi H.3ORCID

Affiliation:

1. West Virginia University (Corresponding author)

2. West Virginia University

3. Obsertelligence llc

Abstract

Summary This paper presents a novel workflow for high-precision leak detection in pipeline networks using the negative pressure wave (NPW) technique. The proposed workflow addresses challenges associated with noisy and convoluted pressure transducer data, rapid pressure decay, and the need for robustness in leak event detection. To overcome these challenges, the workflow incorporates data preprocessing techniques for cleansing, normalization, and denoising, as well as dynamic pressure control limit lines to differentiate between pump and leak events. Multiple transducer analysis techniques are used to minimize false positives. Synthetic leak scenarios are generated using the Water Network Tool for Resilience (WNTR) package, enabling a comprehensive assessment of the workflow’s performance. The generated scenarios are validated through pressure history matching against field inline pressure recordings. A dashboard is developed for real-time visualization and verification of leak events. The effectiveness of the workflow is demonstrated through testing on a real network, resulting in the successful detection and precise localization of a confirmed leak event. The workflow proves its capability to achieve high accuracy, with a 100-m resolution in a complex network configuration with 29 pipe sections and 1-Hz pressure signal recordings. For synthetic leak events, a 10-Hz pressure signal is utilized, achieving a remarkable 10-m accuracy. Moreover, the integration of the workflow with supervisory control and data acquisition (SCADA) systems is showcased, highlighting its potential for near real-time leak detection in practical applications. Overall, this paper presents a comprehensive and effective workflow for high-precision leak detection and localization in pipeline networks, offering valuable insights into improving the efficiency and reliability of leak detection systems.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3