Accounting for Production Shadow in Infill/DUC Well Hydraulic Fracturing Modeling and Calibration

Author:

Gonzalez Daniel1,Holman Robert1,Richard Rex1,Xue Han2,Morales Adrian2,Kwok Chun Ka2,Judd Tobias2

Affiliation:

1. Chesapeake Energy

2. Schlumberger

Abstract

Abstract The stress state at infill wells changes as a function of production from the existing producer. Understanding spatial and temporal in situ stress changes surrounding drilled uncompleted (DUC) wells or infill wells has become increasingly important as the industry works through its inventory of DUC wells and redesigns infill wells with an engineering approach. Optimizing infill/DUC well completion designs requires an estimation of the altered in situ stress state. This study presents the concept of a "production shadow" as the stress change in four-dimensional space, affecting well performance and optimal well configurations for pad development. The production shadow accounts for the compound effects from both hydraulic fracture mechanical opening and stress-state alteration from depletion. This paper details an Eagle Ford case study integrating production shadow effects into the parent and infill well hydraulic fracture modeling as well as "frac hit" analysis. The production shadow influences the degree of fracture complexity developed by the infill/DUC well stimulation. Understanding and accounting for the production shadow are critical in engineering to establish and preserve an optimal connection of the induced stimulated fracture network to the wellbore.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3