Comparison of Numerical vs Analytical Models for EUR Calculation and Optimization in Unconventional Reservoirs

Author:

Moinfar Ali1,Erdle James C.1,Patel Kanhaiyalal1

Affiliation:

1. Computer Modeling Group Inc.

Abstract

Abstract Analytical models available in Rate-Transient-Analysis (RTA) packages are widely used as tools for history matching and forecasting production in unconventional resources. There has also been an increasing interest in the use of numerical simulation of unconventional reservoirs. In this study, we use both methods to history match the production of hydraulically fractured unconventional wells, followed by forecasting future production to establish a well's EUR (Estimated Ultimate Recovery) for reserves determination purposes. This study's goal is to quantify the differences one might expect to encounter in a well's EUR when using analytical model-based RTA vs numerical simulation-based workflows in unconventional reservoirs. First, we consider an undersaturated shale oil reservoir as a base model for this study. The base case also satisfies all assumptions inherent to analytical solution-based methods such as homogenous reservoir properties and fully-penetrating planar fractures. An excellent match between results of both methods for the base model validates the numerical simulation approach. We then impose a series of real-world deviations from RTA assumptions and investigate reliability of EUR predictions made by both approaches. In all cases, historical data and reference EURs are derived from finely-gridded numerical simulations. Example results show that, in the presence of real-world deviations from RTA assumptions, analytical models can still match the historical production data; however, key reservoir and fracture parameters need to be modified drastically to compensate for the lack of sufficient physics in the analytical models. Results show that the analytical solution-based history-matched models are not predictive for future production, and somewhat surprisingly provide pessimistic EURs in all real-world scenarios investigated in this work. For the cases presented in this study, analytical models under-predict EURs by 6-17% when two years of production history is available for matching. The underestimation of EUR increases drastically (up to 60%) as the length of available historical data decreases from 2 years to 3 months. For all cases, we also apply an efficient numerical simulation-based workflow for probabilistic forecasting of EURs. This workflow provides multiple history-matched models that are constrained by historical production data. The probabilistic forecast method employed in this work provides P90 (conservative), P50 (most likely), and P10 (optimistic) values for EUR. In all examples, the range of P90 to P10 EUR values includes the reference EUR, and the P50 values are within 2.2% of the reference EUR.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3