A New Approach To Estimate Invasion Radius of Water-Based-Drilling-Fluid Filtrate To Evaluate Formation Damage Caused by Overbalanced Drilling

Author:

Ling Kegang1,Zhang He2,Shen Zheng2,Ghalambor Ali3,Han Guoqing4,He Jun1,Pei Peng1

Affiliation:

1. University of North Dakota

2. Weatherford

3. Oil Center Research International

4. China University of Petroleum

Abstract

Summary Formation damage caused by overbalanced drilling with water-based mud (WBM) is inevitable as a result of mud filtrate invading the near-wellbore formation. The invasion radius is critical to the multiphase flow when the well is put on production. It contributes to the total skin that hinders the hydrocarbon production. Furthermore, the response of the logging tools may be affected as a result of such invasion, rendering many inaccurate calculations in formation evaluation. To evaluate the skin caused by mud-filtrate invasion, it is important to determine the radius of invasion. A thorough literature review indicated that no practical and reliable method with solid theoretical basis to quantify formation damage is available. Former studies assumed that single-phase drilling fluid displaces reservoir fluid during the invasion. The neglecting of residual reservoir fluid in the invaded zone will introduce error to invasion-radius estimation. This work takes the residual reservoir fluid into account; thus, the estimation of invasion radius is more accurate. This work proposes a practical model to determine the depth of mud-filtrate invasion near the wellbore drilled by WBM. The distribution of mud-filtrate saturation in the near-wellbore region is also calculated by using drilling-operation parameters, mud-filtration-test data, relative permeability, and drilling time. With the accurately determined invasion radius and known wellbore radius, reservoir permeability, and damaged-reservoir permeability, one can evaluate skin factor more accurately. With the knowledge of invasion volume and radius, one can design the wellbore-cleanup procedure appropriately. The proposed model allows engineers to predict the well performance and to diagnose wellbore problems by checking any deviation from the predicted production. This study also can assist with the correction of parameters inferred from log measurements, thereby reducing the over- and/or underestimation of log-derived parameters used in various formation-evaluation calculations.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Mechanical Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3