Research on Multiple Coal Seams Relative Permeability Calculation Method Based on Production Data Inversion

Author:

Huang Tianhao1,Wang Zhiming1,Zeng Quanshu1

Affiliation:

1. China University of Petroleum-Beijing

Abstract

Abstract To obtain the actual gas-water relative permeability of the coalbed methane (CBM) reservoir and further deepen the cognition of the gas-water production law of multiple coal seams, a relative permeability calculation method based on production data inversion is constructed. Based on production data, historical fitting is carried out through the multiple coal seams whole process coupling flow model, and the basic physical parameters of each layer are inversed. Based on the obtained physical parameters, the productivity prediction of the whole production cycle is carried out. By calculating the average water saturation and gas-water relative permeability in each iteration time step, the average gas-water relative permeability curve of the reservoir in the target period is finally obtained. The results show that the calculation method proposed in this paper can realize the acquisition of the relative permeability curve in the given period. Compared with the input relative permeability curve, there is a reverse point on the output relative permeability curve that can represent the continuous production of desorption gas. Gas production is affected significantly by different types of initial input relative permeability curves, and is mainly influenced by the input relative permeability curve at the initial production stage. Under ±30% deviation, the average difference in cumulative gas production is 16.92% (3 years). During the production of CBM wells, the average water saturation was maintained at a high level. At the end of the production of multiple coal seams commingled production well, the average water saturation change is less than 15%. Restricted by high water saturation, the average relative permeability of the gas is always maintained at a low level, less than 0.1 at the end of production of actual production wells. The fundamental technical difficulty in realizing the initial high production and subsequent sustained and stable production of CBM wells lies in how to reduce the reservoir water saturation effectively and improve the relative permeability of the gas, so as to promote the desorption of adsorbed gas and the sustained CBM production.

Publisher

SPE

Reference26 articles.

1. Coalbed Methane Development in China: Challenges and Opportunities[J.;Carpenter;Journal of Petroleum Technology,2018

2. etc. Influence of depressurization rate on gas production capacity of high-rank coal in the south of Qinshui Basin, China[J];Xuefeng;Petroleum Exploration and Development,2019

3. Salmachi, A., Clarkson, C., SuyangZhu, etc. Relative Permeability Curve Shapes in Coalbed Methane Reservoirs[C]. SPE Asia Pacific Oil and Gas Conference and Exhibition, Brisbane, Australia, 2018.

4. Characteristic analysis and fractal model of the gas-water relative permeability of coal under different confining pressures[J];Zhang;Journal of Petroleum Science and Engineering,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3