Coupled Fluid Flow and Geomechanical Modeling of Seismicity in the Azle Area North Texas

Author:

Chen Rongqiang1,Xue Xu1,Yao Changqing1,Datta-Gupta Akhil1,King Michael J.1,Hennings Peter2,Dommisse Robin2

Affiliation:

1. Texas A&M University

2. University of Texas Bureau of Economic Geology

Abstract

Abstract A series of earthquakes was recorded along a mapped fault system near Azle, Texas in 2013. To identify the mechanism of seismicity, coupled fluid flow and geomechanical simulation is carried out to model fluid injection/production and the potential onset of seismicity. Sensitivity studies for a broad range of reservoir and geomechanical parameters are performed and the calibrated models are used to identify controlling mechanisms for seismicity in the Azle area, North Texas and its relationship to hydrocarbon production and fluid injection in the vicinity. Geologic, production/injection, and seismicity data are gathered to build a detailed simulation model with coupled fluid flow and geomechanics. Geomechanical simulation results are used to calculate cumulative seismic moment magnitude. Sensitivity analyses for injection well head pressure and earthquake data are performed over a range of reservoir and geomechanical parameters. Influential parameters are selected to perform a pareto-based multi-objective history matching of well head pressures and seismic moments. Geomechanical interaction has significant impact on seismicity in the Azle area. Unbalanced loading (overall injection and production) on different sides of the fault generates accumulation of strain change, resulting in the onset of seismicity. Previous studies seem to have significantly underestimated the fluid withdrawal rates, almost by an order of magnitude. The equivalent bottom-hole fluid rate used in this study suggests a drop in reservoir pore pressure which is consistent with the BHP trends. Thus, pore pressure increases may not explain the seismicity near the Azle area, as indicated in previous studies. Instead geomechanical effects and strain propagation to the basement appear to be the dominant mechanisms. The low fault cohesion and minimum horizontal stress obtained from history matching suggest that the faults must be near or at the critically-stressed state before the initiation of fluid production/injection. A sensitivity analysis indicates that the minimum horizontal stress and fracture gradient each play a critical role in the potential risk for seismicity related to fluid injection/production. Streamline flow pattern further proves that there is no fluid movement in the basement formation and the unbalanced loading from different sides of the fault is the controlling mechanism. This is the first study coupling fluid flow and geomechanics in the Azle area and the first to simultaneously calibrate the models with fluid flow and seismicity data.

Publisher

SPE

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3