Chemical Sand Consolidation and Agglomeration Control Sand Production

Author:

Carpenter Chris1

Affiliation:

1. JPT Technology Editor

Abstract

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 202419, “Performance Review of Chemical Sand Consolidation and Agglomeration for Maximum Potential as Downhole Sand Control: An Operator’s Experience,” by Nur Atiqah Hassan, SPE, Wei Jian Yeap, SPE, and Ratan Singh, Petronas, et al., prepared for the 2020 SPE Asia Pacific Oil and Gas Conference and Exhibition, originally scheduled to be held in Perth, Australia, 20–22 October. The paper has not been peer reviewed. Chemical sand consolidation (SCON) and sand agglomeration have been identified as effective chemical treatments to control sand production downhole. Both treatments involve injection of chemicals into the near-wellbore area of the reservoir with the aim of improving the strength of the formation and thus reducing the tendency for sand production. The complete paper presents lessons learned and best practices from several chemical SCON and sand-agglomeration treatments performed in mature fields in Malaysia. SCON and Sand Agglomeration History and Performance Petronas has deployed approximately 20 SCON and three sand-agglomeration treatments over nine different offshore fields since 2009. Of 20 planned SCON jobs, four were suspended for a variety of reasons such as budget constraints or operational complexity. Of the 16 SCON jobs executed, a success rate of approximately 75% was achieved. The number of sand agglomeration jobs executed is significantly lower; only three were completed, with one failure case. In terms of effective production, SCON has better overall performance than sand agglomeration. The average effective production period for SCON is approximately 2.9 years, while the average effective production period for sand agglomeration is approximately 2.5 years. Criteria for Candidate Selection Completion Type. - In considering the historical success rate of SCON and sand-agglomeration jobs according to completion type, most viable candidates were completed with perforated cased hole, contributing to approximately 87% of all chemical SCON and sand-agglomeration jobs. Despite the challenges caused by chemical placement in openhole completions, all of these jobs have been successful because of stringent planning. Overall, the success rate for chemical SCON and agglomeration under cased-hole completion is approximately 73%. Perforation Interval Length. - For effective chemical placement, the perforation interval length is limited to 20 ft according to internal guidelines, especially for cases using bullheading as the placement method. For perforation interval lengths greater than 120 ft, the failure rate can be as high as 10%. According to historical trends, no failure was encountered for chemical SCON and sand-agglomeration jobs with perforation intervals of less than 40 ft. The historical analysis indicates, therefore, that the benchmark criteria of perforation interval length could be extended to 40 ft from the current 20 ft. Placement Method. - Most chemical treatment jobs executed were completed using bullheading, contributing to approximately 80% of all chemical SCON and sand-agglomeration jobs. No failure cases were recorded for treatments that used coiled tubing because of the controlled chemical placement. Perforation intervals of almost 100 ft using bullheading placement methods have succeeded. One contributing factor for successful treatment in long intervals using bullheading is the use of diversion techniques. Nitrogen is commonly used as part of a diversion method along with chemical application.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3