Machine Learning Methods to Speed up Compositional Reservoir Simulation

Author:

Gaganis Vassilis1,Varotsis Nikos1

Affiliation:

1. Technical University of Crete, Greece

Abstract

Abstract Compositional reservoir simulation is the most powerful tool available to the reservoir engineer upon which, nowadays, most reservoir development decisions rely on. According to the number of components used to describe the fluids, there is a very high demand for computational power due to the complexity and to the iterative nature of the phase behavior problem solution process. Phase stability and phase split computations often consume more than 50% of the simulation's total CPU time as both problems need to be solved repeatedly for each discretization block at each iteration of the non-linear solver. Therefore, the speeding up of these calculations is a challenge of great interest. In this work, machine learning methods are proposed for the solving of the phase equilibrium problem. It is shown that by using proper transformations, the unknown closed-form solution of the Equation-of-State based formulation can be emulated by proxy models. The phase stability problem is treated by classifiers which label the fluid's state in each block as either stable or unstable. For the phase-split problem, regression models provide the prevailing equilibrium coefficients values given the feed composition, pressure and temperature. The development of both models is performed rapidly and offline in an automated way, by utilizing the fluid's tuned-EoS model, prior to running the reservoir simulator. During the simulation run, the proxy models are called to provide direct answers of the phase equilibrium problem at a very small CPU charge instead of solving iteratively the phase behavior problem. The proposed approach is presented in two-phase equilibria formulation but it can be extended to multi-phase equilibria applications. Examples demonstrate the accuracy of the calculations and the very significant CPU time reduction achieved with respect to currently used methods.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3