History Matching Using a Streamline-Based Approach and Gradual Deformation

Author:

Gautier Y.1,Nœtinger B.1,Roggero F.1

Affiliation:

1. Inst. Français du Pétrole

Abstract

Summary Reservoir engineers often have to deal with history-matching problems. This is time-consuming because of the many numerical simulations that have to be run and also because of the size of the models. Optimization, coupled with gradient-based methods, enables engineers to find efficiently a reservoir representation that respects all static and dynamic data. Nevertheless, for multiphase flow or for compositional problems, only relatively small models can be handled with a finite-volume flow simulator. On the other hand, streamline-based simulation provides accurate and fast estimates to various flow problems. Simulations can be performed on larger models than with a regular fluid flow simulator. Recently, streamline-based simulation has been used for history-matching problems. First, analytical gradients of production data with respect to a geostatistical parameterization have been computed for the tracer-flow case. The saturations along streamlines were moved using an analytical solution of the transport equation. This approach then has been extended to waterflood problems with varying boundary conditions. In our method, we compute gradients of the production data, of the saturation, and of the pressure. We use a 1D numerical simulator to move the saturation along streamlines. This method is more general than when analytical calculations are used; it is more accurate for complex flow patterns. It also can be extended to take into account other parameters such as gravity. The major drawback is that it is more time-consuming; the cost for the computation of each gradient is slightly smaller than the cost of a simulation. Nevertheless, this cost can be dramatically decreased by computing multiple gradients at the same time on different processors using parallelism. These gradients will be used to perform history matching using a nonlinear optimization package in conjunction with a geostatistical method, the gradual deformation method, enables the combination of multiple realizations of a permeability field and the continuous variation from one to another. We will apply our new method to perform a history match on a large-scale 3D synthetic example of a waterflood with a complex injection history.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improved history matching of channelized reservoirs using a novel deep learning-based parametrization method;Geoenergy Science and Engineering;2023-10

2. Dimensionality Reduction Methods Used in History Matching;Introduction to Geological Uncertainty Management in Reservoir Characterization and Optimization;2023

3. Uncertainty Management in Reservoir Engineering;Introduction to Geological Uncertainty Management in Reservoir Characterization and Optimization;2023

4. A review of automatic history matching;Materials Today: Proceedings;2021-08

5. Three-Dimensional Streamline Tracing Method over Tetrahedral Domains;Energies;2020-11-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3