Tight Reservoir: Characterization, Modeling, and Development Feasibility

Author:

Salahuddin Andi A.1,Al Seiari Jamila M.1,Al Shehhi Abdulla S.1,Al Hammadi Khaled E.1

Affiliation:

1. Abu Dhabi National Oil Company Onshore

Abstract

Abstract The distribution of reservoir quality in tight carbonates depends primarily upon how diagenetic processes have modified the rock microstructure, leading to significant heterogeneity and anisotropy. The size and connectivity of the pore network may be enhanced by dissolution or reduced by cementation and compaction. Consequently, a clear understanding of the diagenetic process that responsible for the reservoir tightness would offer vital assurance on the spatial property distribution and future field development plan. In this paper, we have examined the factors which affect the distribution of porosity, permeability and reservoir quality in the Thamama Group, which is a prospective low permeability carbonate reservoir rock in Onshore Abu Dhabi. The dataset includes regional stratigraphy, well logs and core material from a number of wells, a suite of laboratory petrophysical measurements, seismic attributes, geomechanics, fracture study, and production history. Dataset analysis and interpretation suggested that the reservoir was deposited in shallow to deep marine low energy environment which led to deposition of fine to very fine grains (lime-mud supported) types of sediments. This, in turn, would produce poor reservoirs during compaction and finally leads to tightness. Because of the low permeability nature of this tight reservoir, it is quite challenging to obtain their complete reservoir properties and dynamic behavior. As in many other tight reservoir projects, a considerable area of the reservoir must be effectively stimulated during the hydraulic fracturing process to achieve economic productivity. In addition, development of tight reservoirs often faces challenges, for example, low initial production rates and high declining rate. This paper aims to frame all possible optimum development practices for tight reservoir in the studied field that should be considered for future development plan. We also investigated the application of new technology to enhance the poor oil recovery within the pool including horizontal drilling and multi-stage fracture completion technology. Furthermore, this paper also discusses well orientation relative to the far field principal stresses, hydraulic fractures treatment, fracture fluid selection, and nano-technology application. This, in turn, would provide valuable information on how to optimally develop this previously considered marginal and uneconomic reservoir.

Publisher

SPE

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3