Generalized Correlations for Predicting Solubility, Swelling and Viscosity Behavior of CO2 -Crude Oil Systems

Author:

Simon R.1,Graue D.J.1

Affiliation:

1. California Research Corp.

Abstract

Abstract This paper presents correlations for predicting the solubility, swelling and viscosity behavior of CO2-crude oil systems. The correlations were developed from experimental data obtained by the authors. These data are also presented. The data were determined by measuring the properties of mixtures of CO2 and nine different oils. Experimental conditions covered a range of 100 to 250 degrees F and pressures up to 2,300 psia. Properties predicted by the correlations have average deviations, expressed as per cent of experimental value, of 2 per cent for solubility, 0.5 per cent for swelling and 12 per cent for viscosity. Introduction Interest in CO2 injection as an oil recovery process has led to the development of performance prediction methods which can be applied to specific reservoirs. To use these performance prediction methods, it is necessary to know the solubility, swelling, and viscosity properties of CO2-crude oil mixtures at reservoir conditions. Some information on these properties has appeared in the literature; however, this information did not cover the range of different oils and conditions needed to prepare generalized correlations for reservoir engineering purposes. Consequently, an experimental program was undertaken to collect the data needed. The data obtained and the correlations developed from the data are described in the following sections of this paper. SOLUBILITY OF CO2 IN CRUDE OILS CO2 solubility data in the literature come from six principal sources. The solubility prediction method of Welker and Dunlop is limited to 80F.The information in Ref. 4 is of two types: the first includes binary and ternary mixtures of CO2 and light hydrocarbons (C1 to C6), and the second gives data for CO2 and heavy hydrocarbons for a temperature range of 40 to 90F.Ref. 5 contains a KCO2 chart for systems whose convergence pressure is 4,000 psia. The KCO2's are based mainly on CO2-natural gas mixtures. Poettmann's work covered CO2 solubility in one condensate and one crude oil. Jacoby and Rzasa measured CO2 solubilities as a function of pressure and temperature for two natural gas-absorber oil mixtures and two natural gas-crude oil mixtures. CO2 concentration in these four systems was fixed at 5 mol per cent. The work reported in this paper extends CO2 solubility data to a variety of different crude oil types in a temperature range from 110 to 250F and pressures up to 2,300 psia. The experimental procedure used by the authors to obtain the solubility data consisted of combining known amounts of pure CO2 and crude oil in a visual cell at a fixed temperature and measuring the bubble point of the mixture. Measurements were made for a total of 40 different CO2-oil mixtures and the results are shown in Table 2. The mixtures included nine different oils (seven crude oils and two refined oils) whose properties are listed in Table 1. All nine oils had vapor pressures less than 1 atm at the experimental temperatures. Consequently, analysis of the bubble-point vapor showed a CO2 concentration over 99 mol per cent. At no time during these experiments was a second, more dense, liquid phase observed. The solubility correlation which was developed from the data in Table 2 is presented in Figs. 1, 2 and 3. In these figures, solubility is expressed as xCO2, the mol fraction of CO2 in the CO2-Oil mixture. Fig. 1 shows solubility as a function of CO2 fugacity and temperature. Fig. 2 shows the same solubility data expressed as a function of saturation pressure and temperature. The solubility shown in Figs. 1 and 2 is for an oil whose UOP characterization factor is 11.7. UOP characterization factors of crude oils can be determined from Ref. 10 if the viscosity and API gravity of the oil are known. Fig. 3 gives the solubility correction factor for oils whose UOP characterization factors differ from 11.7. JPT P. 102ˆ

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

Cited by 139 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3