Surfactant Enhanced Oil Recovery from Tight Carbonates: Core-Scale Experiments to Reservoir-Scale Modeling

Author:

Shi Yue1,Mohanty Kishore1

Affiliation:

1. The University of Texas at Austin

Abstract

Abstract Most carbonate reservoirs are oil-wet/mixed-wet and heterogenous at multiple scales. Majority of the injected water flows through the high permeability regions/fractures and bypass the oil in the matrix due the high negative capillary pressure (Pc). To enhance oil recovery from such reservoirs, the sign of the Pc should be changed by wettability alteration (WA) or the Pc should be reduced by lowering interfacial tension (IFT). In this study, surfactants which can either alter wettability or develop ultra-low IFT were identified through laboratory measurements for the target carbonate reservoir. The performance of these two types of surfactants was systematically evaluated at the core scale and scaled-up to the reservoir scale. A reservoir-scale model was developed to simulate injection-soak-production (ISP) tests and evaluate performance of the selected surfactants at the field scale. Experiments showed that quaternary ammonium cationic surfactants have excellent WA ability, while a series of propoxy sulfate anionic surfactants showed intermediate WA and ultra-low IFT. Spontaneous imbibition tests showed that WA surfactants have fast initial oil production, while ultra-low IFT surfactants has low initial oil rate but higher final oil recovery, which was validated by mechanistic simulation. Low IFT results in low Pc and slow imbibition, but also triggers gravity-driven drainage. For ultra-low IFT system, gravity drainage is more dominant than WA, and Pc-alteration is less important than relative permeability (Kr) alteration. As reservoir thickness increases, Kr-alteration is more important than Pc-alteration. Gravity drainage is expected to be scaled up by length of matrix (L), while Pc-driven imbibition is scaled by L2. Field-scale simulation showed that low-IFT surfactant has better injectivity than WA surfactant during injection phase. In soaking phase, spontaneous imbibition by WA surfactant is much more significant than that by low-IFT surfactant. In production phase, post-waterflood achieved higher oil recovery from low-IFT surfactant treated matrix due to its low residual oil saturation and high oil relative permeability.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3