Pressure Effects on Low-Liquid-Loading Oil/Gas Flow in Slightly Upward Inclined Pipes: Flow Pattern, Pressure Gradient, and Liquid Holdup

Author:

Rodrigues Hendy T.1,Pereyra Eduardo2,Sarica Cem2

Affiliation:

1. University of Tulsa and Petrobras

2. University of Tulsa

Abstract

Summary This paper studied the effects of system pressure on oil/gas low–liquid–loading flow in a slightly upward inclined pipe configuration using new experimental data acquired in a high–pressure flow loop. Flow rates are representative of the flow in wet–gas transport pipelines. Results for flow pattern observations, pressure gradient, liquid holdup, and interfacial–roughness measurements were calculated and compared to available predictive models. The experiments were carried out at three system pressures (1.48, 2.17, and 2.86 MPa) in a 0.155–m–inside diameter (ID) pipe inclined at 2° from the horizontal. Isopar™ L oil and nitrogen gas were the working fluids. Liquid superficial velocities ranged from 0.01 to 0.05 m/s, while gas superficial velocities ranged from 1.5 to 16 m/s. Measurements included pressure gradient and liquid holdup. Flow visualization and wire–mesh–sensor (WMS) data were used to identify the flow patterns. Interfacial roughness was obtained from the WMS data. Three flow patterns were observed: pseudo-slug, stratified, and annular. Pseudo-slug is characterized as an intermittent flow where the liquid does not occupy the whole pipe cross section as does a traditional slug flow. In the annular flow pattern, the bulk of the liquid was observed to flow at the pipe bottom in a stratified configuration; however, a thin liquid film covered the whole pipe circumference. In both stratified and annular flow patterns, the interface between the gas core and the bottom liquid film presented a flat shape. The superficial gas Froude number, FrSg, was found to be an important dimensionless parameter to scale the pressure effects on the measured parameters. In the pseudo-slug flow pattern, the flow is gravity–dominated. Pressure gradient is a function of FrSg and liquid superficial velocity, vSL. Liquid holdup is independent of vSL and a function of FrSg. In the stratified and annular flow patterns, the flow is friction–dominated. Both pressure gradient and liquid holdup are functions of FrSg and vSL. Interfacial–roughness measurements showed a small variation in the stratified and annular flow patterns. Model comparison produced mixed results, depending on the specific flow conditions. A relation between the measured interfacial roughness and the interfacial friction factor was proposed, and the results agreed with the existing measurements.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3