Real-Time Well-Integrity Monitoring Using Fiber-Optic Distributed Acoustic Sensing

Author:

Raab T..1,Reinsch T..2,Aldaz Cifuentes S. R.1,Henninges J..1

Affiliation:

1. GFZ German Research Centre for Geosciences

2. GFZ German Research Centre for Geosciences and Delft University of Technology

Abstract

Summary Proper cemented casing strings are a key requirement for maintaining well integrity, guaranteeing optimal operation and safe provision of hydrocarbon and geothermal resources from the pay zone to surface facilities. Throughout the life cycle of a well, high–temperature/high–pressure changes in addition to shut–in cyclic periods can lead to strong variations in thermal and mechanical load on the well architecture. The current procedures to evaluate cement quality and to measure downhole temperature are mainly dependent on wireline–logging campaigns. In this paper, we investigate the application of the fiber–optic distributed–acoustic–sensing (DAS) technology to acquire dynamic axial–strain changes caused by propagating elastic waves along the wellbore structure. The signals are recorded by a permanently installed fiber–optic cable and are studied for the possibility of real–time well–integrity monitoring. The fiber–optic cable was installed along the 18⅝–in. anchor casing and the 21–in.–hole section of a geothermal well in Iceland. During cementing operations, temperature was continuously measured using distributed–temperature–sensing (DTS) technology to monitor the cement placement. DAS data were acquired continuously for 9 days during drilling and injection testing of the reservoir interval in the 12¼–in. openhole section. The DAS data were used to calculate average–axial–strain–rate profiles during different operations on the drillsite. Signals recorded along the optical fiber result from elastic deformation caused by mechanical energy applied from inside (e.g., pressure fluctuations, drilling activities) or outside (e.g., seismic signals) of the well. The results indicate that the average–axial–strain rate of a fiber–optic cable installed behind a casing string generates trends similar to those of a conventional cement–bond log (CBL). The obtained trends along well depth therefore indicate that DAS data acquired during different drilling and testing operations can be used to monitor the mechanical coupling between cemented casing strings and the surrounding formations, hence the cement integrity. The potential use of DTS and DAS technology in downhole evaluations would extend the portfolio to monitor and evaluate qualitatively in real time cement–integrity changes without the necessity of executing costly well–intervention programs throughout the well's life cycle.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3