Novel Proppant Logging Technique for Infill Drilling of Unconventional Shale Wells

Author:

Maity Debotyam1,Ciezobka Jordan2

Affiliation:

1. Gas Technology Institute (Corresponding author)

2. Gas Technology Institute

Abstract

Summary During the development of an unconventional play, wells are drilled and completed in batches, and depending on the development plans, current and expected energy market trends, as well as other developmental considerations, new wells are drilled and hydraulically fractured later near existing producing laterals. This creates challenges in terms of optimizing resource recovery and reducing interwell communication. A novel approach is proposed that utilizes systematic composite sampling and analysis of drilling mud returns to look for and quantitatively identify sand particles. The workflow involves cleaning, drying, and segregation of samples into sizes of interest to us (size distribution of pumped proppant in offset parent wells). These samples are imaged at a very high resolution and analyzed for grains using characteristic optical imaging properties to classify proppant sand particles using computer vision algorithms. Further analysis, such as elemental compositional analysis, is used to validate the results from the imaging workflow. We present a case study from the Permian Basin, where a new child well was used as a test case to prove this technology at the Hydraulic Fracturing Test Site (HFTS-2) in Delaware Basin. We introduce new proppant parameters that help identify sustained proppant zones vs. localized propped fractures. We have used additional diagnostics and data collected at the test site to validate observations from the proppant log and have successfully interpreted significantly propped vs. unpropped zones. A key finding from this test has been the significant proppant transport distances observed away from parent wells. Observable proppant was found at a lateral distance of approximately 425 m for one set of parent wells and more than 915 m for another set of parent wells. While a major limitation of this technique is the sampling rate, given adequate sampling, the proposed technology represents a systematic and one-of-a-kind interpretation of spatial proppant distribution while drilling infill wells. It provides us with unique opportunities to better understand the current state of the reservoir being targeted, including zones that are likely highly drained relative to others, and how the planned hydraulic fracturing of child wells can be improved.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

Reference31 articles.

1. What Microseismicity Tells Us About Re-Fracturing – An Engineering Approach to Re-Fracturing Design;Agharazi;Hydraul Fract J,2016

2. Characterizing Fractures to Improve Hydraulic Fracturing Efficiency in Shale Reservoirs Through Use of an LWD Ultrasonic Imager Designed for Oil-Based Mud Environments;Amorocho,2020

3. Microseismic Moment Tensors: A Path to Understanding Frac Growth;Baig;Lead Edge,2010

4. Hydraulic Fracture Geometry Evaluation Using Proppant Detection: Experiences in Saudi Arabia;Bartko,2013

5. Inference of Induced Fracture Geometries Using Fiber-Optic Distributed Strain Sensing in Hydraulic Fracture Test Site 2;Bourne,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3