Optimizing Drawdown Strategies in Wells Producing from Complex Fracture Networks

Author:

Kumar Ashish1,Seth Puneet1,Shrivastava Kaustubh1,Sharma Mukul M.1

Affiliation:

1. The University of Texas at Austin

Abstract

Abstract In unconventional reservoirs, the presence of natural fractures coupled with high pore pressures leads to the creation of complex fracture networks. During drawdown, the fracture network experiences large changes in the stresses which can affect the fracture conductivity, and hence the production rate. We present a workflow to find an optimum drawdown strategy in which the fractures can remain conductive while maintaining a high enough drawdown to maximize production. A fully coupled geomechanical reservoir simulator is developed to simulate production from complex fracture networks. Flow in the fracture and reservoir domains is solved in two separate conforming meshes which are coupled through matrix-fracture transfer indices. The complex fracture network is represented as an explicit discontinuity in the reservoir domain which is essential to capture the stress variations in the vicinity of the fractures due to reservoir depletion and fracture closure. The fracture closure process is modeled dynamically using the Barton-Bandis contact relationship, and the fracture conductivity is determined using the fracture width and proppant concentration. This model is used to study the impact of drawdown strategy on fracture conductivity and well productivity. It is observed that the estimated ultimate recovery (EUR) from complex fracture networks depends upon the connected fracture conductivity and the applied drawdown. A conservative drawdown strategy maintains the fracture conductivity for a longer period but results in a lower initial production rate. As the drawdown is increased, the unpropped fractures close and can cause a large portion of the fracture network (the part behind the closed segment) to get disconnected from the wellbore. This reduces the available fracture area for production. Although an aggressive drawdown strategy results in higher initial production rates, it can lead to faster fracture closure, in turn resulting in a lower EUR. Impact of drawdown strategy on productivity is analyzed at different fracture closure rates. We show that the optimum choke management strategy depends on the sensitivity of the fracture conductivity to stress. A coupled geomechanical reservoir model is presented that can simulate production with dynamic fracture closure in complex fracture networks to quantify this effect.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3