Affiliation:
1. Gulf Research and Development Co.
Abstract
Abstract
A sulfonate system composed of Stepan Petrostep TM 465, Petrostep 420, and 1-pentanol was investigated. The system was found to give ultralow interfacial tension against crude oil in a reasonable range of salinity and sulfonate concentrations. It also was found that sulfonate partitioned predominantly into the microemulsion phase. However, a significant amount also partitioned into water and, at high salinity, into the oil phase. On the other hand, the oil-soluble 1-pentanol partitioned mostly into oil and microemulsion phases.The interfacial tension between excess oil and water phases was ultralow, in the range of 10-3 mN/m. The tensions were close to and paralleled those between the middle and water phases. The trend remained the same even when the alcohol content changed. This means that in the salinity range that produces a three-phase region, below the optimal salinity, the water phase effectively displaces both oil and middle phases, even though the oil may not be displaced effectively by the middle phase. The implication is that, from an interfacial tension point of view, the oil recovery would be more favorable in the salinity range below the optimal salinity with the mixed petroleum sulfonate system used here. This was confirmed by oil recovery tests in Berea cores. It also was concluded that the change in viscosity upon microemulsion formation might have a significant influence on the surfactant flood performance.
Introduction
During a surfactant flood, the injected slug of surfactant solution undergoes complex changes as it traverses the reservoir. The surfactant solution is diluted by mixing with reservoir oil and brine and by depletion of surfactant due to retention. Also, the reservoir salinity rarely is the same as that of the injected solution. Moreover, there is chromatographic separation of sulfonate and cosurfactant.When phase equilibrium between oil, brine, and injected surfactant is reached in the front portion of the slug, a microemulsion phase is formed. This phase behavior and its importance in oil recovery have been the subject of numerous papers in recent years. The microemulsion phase formed in the reservoir contacts fresh reservoir brine and oil and undergoes further changes. All these changes are accompanied by property changes of the phases that affect oil recovery.The objective of this paper is to investigate the properties of a blend of commercial petroleum sulfonates and its behavior in different environments. The phase volume behavior and changes in the properties of different phases and their effects on oil recovery were studied. This work was done as part of the design of a surfactant process for a field application. Therefore, a crude oil was used as the hydrocarbon phase.
Experimental Procedures
A blend of Petrostep 465 and 420 from Stepan Chemical Co. was used as the surfactant. An equal weight of each sulfonate on a 100% active basis was mixed. 1-pentanol from Union Carbide Corp. was used as a cosurfactant. Unless otherwise stated, a 50g/kg sulfonate concentration was used in the solution. We used symbols to denote the formulation. The first number in the symbol indicates the 1-pentanol concentration; the last number indicates the NaCl concentration. Thus, 15 P 10 means that the solution consists of 50 g/kg sulfonate, 15 g/kg 1-pentanol, and 10 g/kg NaCl. The sulfonate blend first was mixed with alcohol, and then the required amount of NaCl brine was added to make the solution.
SPEJ
P. 573^
Publisher
Society of Petroleum Engineers (SPE)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献