Field-Scale Analysis of Heavy-Oil Recovery by Electrical Heating

Author:

Hascakir B..1,Babadagli T..2,Akin S..1

Affiliation:

1. Middle East Technical University

2. University of Alberta

Abstract

Summary Electrical heating for heavy-oil recovery is not a new idea, but the commercialization and wider application of this technique require detailed analyses to determine optimal application conditions. In this study, applicability of electrical heating for heavy-oil recovery from two heavy-oil fields in Turkey (Bati Raman and Camurlu) was tested numerically. The physical and chemical properties of the oil samples for the two fields were compiled, and in-situ viscosity reduction during the heating process was measured with and without using iron powder. Iron powder addition to oil samples causes a decrease in the polar components (such as carboxylic and phenolic acids) of oil, and the viscosity of oil can be reduced significantly because of the magnetic fields created by iron powders. Three different iron-powder types at three different doses were tested to observe their impact on oil recovery. Experimental observations showed that viscosity reductions were accomplished at 88 and 63% for Bati Raman and Camurlu crude oils, respectively, after 0.5% iron (Fe) addition, which was determined as the optimum type and dose for both crude-oil samples. Next, field-scale recovery was tested numerically using the viscosity values obtained from the laboratory experiments and physical and chemical properties of the oil fields compiled from the literature. The power of the system, operation period, and the number of heaters were optimized. Economic evaluation performed only on the basis of the electricity cost using the field-scale numerical modeling study showed that the production of 1 bbl petroleum costs approximately USD 5, and at the end of 70 days, 320 bbl of petroleum can be produced. When 0.5% Fe is added, oil production increased to 440 bbl for the same operational time period.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3