Gas Mass Transport Model for Microfractures Considering the Dynamic Variation of Width in Shale Reservoirs

Author:

Zeng Fanhui1,Peng Fan1,Guo Jianchun1,Rui Zhenhua2,Xiang Jianhua3

Affiliation:

1. Southwest Petroleum University

2. Southwest Petroleum University and Massachusetts Institute of Technology

3. PetroChina Company Limited Southwest Oil and Gas Field Branch

Abstract

Summary Microfractures are commonly observed in shale reservoirs. During the shale gas–production process, stress sensitivity induces a change in the width of the microfractures, which is a significant factor that affects shale gas mass transport. By using research methods based on desorption theory and elastic–plastic mechanics, a shale gas mass transport model that considers the dynamic variations in the microfracture width is established in this paper. This model comprehensively fuses the surface diffusion model, slip flow model, Knudsen diffusion model, and cubic grid model. The reliability of this model is verified using molecular simulations, which do not include surface diffusion. The shale gas is considered as pure methane. Then, the different contributions of the gas mass transport mechanisms to the total mass transport are discussed in detail. The results demonstrate the following findings: (1) The studied flows are well–simulated by the proposed model. (2) Stress sensitivity results in a decrease in gas mass transport when the formation pressure exceeds 3.4 MPa, and the minimum value is approximately 0.45 times smaller than that when the width change is not considered. Moreover, stress sensitivity results in an increase in gas mass transport when the formation pressure is lower than 3.4 MPa, and the maximum value is approximately 4.5 times higher than that when the width change is not considered. (3) Shale gas mass transport is positively associated with the Young's modulus and Poisson's ratio, whereas it is negatively associated with the microfracture compressibility. When the formation pressure is less than 4 MPa, shale gas transport is positively correlated with the desorption capacity, whereas when the formation pressure exceeds 4 MPa, the effect of different desorption capacities on gas transport is nearly consistent. (4) When the microfracture width is at nanoscale and the reservoir pressure is lower than 15 MPa, surface diffusion has an obvious effect on the shale gas mass transport process. When the contribution of surface diffusion to the total shale gas mass transport is relatively small, the contributions of slip flow and Knudsen flow to shale gas mass transport exhibit the trend of “shifting each other.” When the surface diffusion contribution is larger, a reduction in its contribution leads to simultaneous initial increases in the contributions of slip flow and Knudsen flow to shale gas mass transport, and then these flows begin “shifting each other.”

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3