The Effect of Nano Heavy Metal Oxide Particles on the Wettability of Carbonate Reservoir Rock

Author:

Pashaei Hassan1ORCID,Ghaemi Ahad2ORCID,Miri Rohaladin1ORCID

Affiliation:

1. School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology

2. School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (Corresponding author)

Abstract

Summary Production of oil from carbonate rocks is very challenging due to their inherent nature, such as detection, complex wettability, pore structure, and low recovery factor. Nanoparticles (NPs) are recognized as remarkable materials for a wide range of research and commercial applications due to their physical properties and characteristics. Extensive research in recent years has shown that nanoscience can provide great potential for the development of carbonate reservoirs and enhanced oil recovery (EOR). In this study, the carbonate core plug samples were prepared from an Iranian reservoir. At first, the wettability capacity of the core samples was evaluated. This process was carried out by evaluating wettability changes using the contact angle of base fluid and nanofluid. The potential of the NPs (ZnO, TiO2, and ZrO2) to change the wettability was experimentally tested in the loading NPs from 0.01 wt% to 0.5 wt% by the contact angle method. Wettability studies have shown that nanofluids can influence wettability variability from oil-wet to water-wet quality. About 0.05 wt% of NPs was found to be the optimal concentration to affect wettability change. The same behavior was observed for all nanofluids at the same NP loading; while TiO2 showed better performance with a sharp change from an oil-wet state (θ = 151.9°) to a water-wet state (θ = 111.3°), ZnO, and ZrO2 changed wettability to a moderately-wet condition (θ = 108.6° and 118.6°, respectively) at 0.05 wt% NP loading. We conclude that TiO2-based nanofluids have great potential as EOR agents, and TiO2 is very impressive in its strong water-wettability. The highest oil recovery in the optimal amount for all three nanofluids was obtained as 35.2%, 23.2%, and 25.6%, respectively, for TiO2, ZnO, and ZrO2 nanofluids. Furthermore, we considered the effect of nanofluids on the recovery performance of the brine/oil system for carbonate core samples. The results showed that nanofluids can significantly imbibe into the core sample, and as a result, the final oil recovery is significant.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3