Affiliation:
1. JPT Senior Staff Writer
Abstract
Over the past few years additive manufacturing (AM) technology has grown in popularity as companies explore its potential. Applying layer upon layer of polymers can create objects of almost any shape and geometry guided by design files, and now, recent developments have made it possible to print metal parts and components, making it a potentially disruptive innovation for the supply chain.
AM has already had an impact on other industries such as aviation—Air-bus agreed in October to a deal to manufacture polymer parts for use on its A350 XWB aircraft—and now, as oil and gas companies look to adopt AM into their supply chain management, service companies are breaking through with new machines and processes that may facilitate larger-scale production of parts and components in the future. In addition, a new guideline has been established to help bridge the gap between the quality assurance of parts created by an AM process and those created through traditional manufacturing processes.
Additive Manufacturing Qualification
In November, DNV GL published its first classification guideline for the use of AM in maritime and oil and gas. The guideline was designed to bridge the gap between the quality assurance of parts and components created by an AM process and those created through traditional manufacturing processes by creating a clear pathway for AM certification. The guideline serves as an umbrella document that establishes the overall framework process for qualification and certification of AM products and further points to other DNV specific services/documents that are relevant in assessing parameters that will impact the final product, from the materials used to the actual printing and post-processing.
Brice Le Gallo, DNV’s regional manager for Southeast Asia and Australia, said the lack of a guideline was one of the more significant hurdles for more widespread adoption of AM processes. Because there are currently only a handful of AM standards, companies often conduct their own testing to ensure integrity of the equipment, parts, and components. The cost and time needed to conduct these tests deters wider adoption. In addition, AM processes typically incur higher material and machining costs than conventional manufacturing. He said the new guideline will help provide a blueprint that may encourage further adoption.
“Today what we see is that the level of adoption in these industries, maritime and offshore oil and gas, is still quite low. One of the areas where we can really help the industry get the level of adoption increased is on the qualification side,” Le Gallo said. “This is one of the most important hurdles. We think that by bringing appropriate qualification frameworks to the industry, we will see an important increase in the level of adoption. This would then lead to greater volume, which in turn would lead to costs going down.”
Publisher
Society of Petroleum Engineers (SPE)
Subject
Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Influence of multiple scan fields on the processing of 316L stainless steel using laser powder bed fusion;Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications;2020-08-19