Injection-Induced Hydraulic Fracturing in a Naturally Fractured Carbonate Reservoir: A Case Study from Saudi Arabia

Author:

Azeemuddin M.1,Ghori S.G.1,Saner S.1,Khan M.N.1

Affiliation:

1. King Fahd University of Petroleum & Minerals

Abstract

Abstract A case study involving power water injection in the fractured Arab-D carbonate reservoir in a Saudi Arabian field is discussed. The study was conducted to investigate the role of injection operations in the initiation and propagation of induced fractures and their communication with nearby faults, and to provide a methodology for early detection of the induced fracturing process. The study involved analysis of data gathered from step-rate, falloff, flowmeter tests, as well as injection rate and pressure data over the history of the injection operation, followed by well test modeling and hydraulic fracture modeling (HFM). Most of the eight wells studied showed the existence of fractures, corresponding to a rise in injection pressure beyond the fracturing gradient or formation parting pressure (FPP). Skin and injectivity indices obtained from the falloff tests were found to be good indicators of fracturing behavior, based on which most of the studied wells were inferred to communicate with the natural fracture system or super-permeability streaks. HFM showed that induced fractures could reach a half-length of up to 1400 ft, to various heights depending upon the injection rate and permeability. The distance to the nearest fault obtained by superimposition on a 3-D seismic interpretation was found to vary from 500 to 2,000 ft. At high injection rates, fractures were found to grow out of reservoir into underlying tight formation, which could lead to loss of injected water. For controlled fracture height, which may lead to more efficient injection operations, preparation of injection rate guidelines was recommended. Introduction Water injection is commonly practiced in depleting reservoirs for pressure support, to increase total recovery, etc. High injection pressures may sometimes exceed the formation parting pressure (FPP), creating/opening fractures that may communicate with the natural fracture system in a naturally fractured reservoir. The horizontal and vertical extent of the induced fractures, and their interaction with the natural fracture system, determines the efficiency of the injected water for the desired purpose. The present study deals with power water injection in an oil-producing, fractured carbonate reservoir in Saudi Arabia. Eight power water injection wells were identified for the study. The purpose of the study was to:investigate if the injection operations lead to the initiation and propagation of fractures,to determine the extent of the induced fractures which could establish a communication with nearby faults, and,to determine a methodology for early detection of the induced fracturing process.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3