Complete Equation of State Thermal Formulation for Simulation of CO2 Storage

Author:

Moncorgé Arthur1,Petitfrère Martin2,Thibeau Sylvain2

Affiliation:

1. TOTAL (Corresponding author; email: arthur.moncorge@total.com)

2. TOTAL

Abstract

Summary Storage of carbon dioxide (CO2) in depleted gas reservoirs or large aquifers is one of the available solutions to reduce anthropogenic greenhouse gas emissions. Numerical modeling of these processes requires the use of large geological models with several orders of magnitude of variations in the porous media properties. Moreover, modeling the injection of highly concentrated and cold CO2 in large reservoirs with the correct physics introduces numerical challenges that conventional reservoir simulators cannot handle. We propose a thermal formulation based on a full equation of state (EoS) formalism to model pure CO2 and CO2 mixtures with the residual gas of depleted reservoirs. Most of the reservoir simulators model the phase equilibriums with a pressure-temperature-based formulation. With this usual framework, it is not possible to exhibit two phases with pure CO2 contents. Moreover, in this classical framework, the crossing of the phase envelope is associated with a large discontinuity in the enthalpy computation, which can prevent the convergence of the energy conservation equation. In this work, accurate and continuous phase properties are obtained, basing our formulation on enthalpy as a primary variable. We first implement a new phase-split algorithm with input variables as pressure and enthalpy instead of the usual pressure and temperature, and we validate it on several test cases. This algorithm can model situations in which the mixture can change rapidly from one phase to the other at constant pressure and temperature. Then, treating enthalpy instead of temperature as a primary variable in both the reservoir and the well modeling algorithms, our reservoir simulator can model situations with pure or near pure components, as well as crossing of the phase envelope that usual formulations implemented in reservoir simulators cannot handle. We first validate our new formulation against the usual formulation on a problem in which both formulations can correctly represent the physics. Then, we show situations in which the usual formulations fail to represent the correct physics and that are simulated well with our new formulation. Finally, we apply our new model for the simulation of pure and cold CO2 injection in a real depleted gas reservoir from the Netherlands.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3