Hydraulic Fracture Experience in an Omani Oil Field

Author:

Dobroskok Anastasia1,De Vries Sietse1,Al Zadjali Ruqaiya1

Affiliation:

1. Petroleum Development Oman

Abstract

Abstract The objective of this paper is to review the hydrofracturing experience in one of the Omani oil fields and to provide better understanding of geological and operational controls on the productivity of the fractured wells. The methodology adopted in the study relied on the geomechanical evaluation for understanding the hydrofracture geometry. In particular a geomechanical model was built and calibrated by history matching the simulated and field data. Further, the implications of the created hydrofracture geometry in productivity have been studied based on the conceptual understanding and actual production histories. Last but not least, the influence of operational parameters on the hydrofracture success has also been studied. The geomechanical evaluation concluded that it is likely that the hydraulic fracture’s growth is unconfined and downwards. Because of the combination of the unconstrained growth with relatively high reservoir permeability, the created fractures potentially are of limited length and of relatively good conductivity. According to a semi-analytical bi-linear production model, these parameters are nearly optimal for the particular reservoir. Preference for highly conductive and short fracture is due to reazonably high fluid mobility in the reservoir, high viscosity of hydrocarbons, and a relatively close well spacing. Horizontal well technology is an alternative to the hydraulic fracturing in the considered settings. Meanwhile the preference may be given to hydraulic fracturing if the commingling of the targeted unit with the overlying or underlying reservoirs is sought after. On the other hand, in the areas of structural deep, the unconfined downward growth poses a risk of connecting to the water zone. Production histories of the wells indicate that water inflow has a very pronounced negative effect on hydrocarbon production and thus must be avoided. The calibrated geomechanical model helps in choosing operational parameters that allow for proper hydrofracture design in the areas of structural deep. Nevertheless, horizontal wells will be beneficial in the areas where fracture connectivity to the water zone is likely. Finally, a review of the fracturing operations has been carried out to understand the potential for improving the success rate. Because of the overall limited number of hydrofracturing jobs in the field, the results are far from being definitive. Meanwhile it is possible to hypothesize on the range of optimal operational parameters. In particular, this study recommends using limited volumes of fracturing fluids and coarser proppant mesh. The choice is based on the necessity to avoid communication with the water zone and the requirement of a highly conductive fracture for the efficient drainage. The recommendation is supported by limited trials. A viable alternative is combining deviated drilling technology with hydraulic fracturing. In such combination longitudinal small volume fractures should be targeted. The benefits of production enhancement and potentially achieving better capital efficiency are then achieved through commingling production from several units and increasing wellbore connectivity with the reservoirs. Meanwhile, it is important to keep in mind that the economic benefits can be realized when applying each of the considered development options, i.e., i) vertical, or ii) deviated commingled fractured wells, or dedicated horizontal non-fractured wells. In the considered field the particular choice is driven by the current economic environment, thorough risk assessment, and operational efficiency.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3