Drilling Through Gas-Hydrate Sediments: Managing Wellbore-Stability Risks

Author:

Khabibullin T..1,Falcone G..1,Teodoriu C..2

Affiliation:

1. Texas A&M University

2. Clausthal University of Technology

Abstract

Summary As hydrocarbon exploration and development moves into deeper water and onshore Arctic environments, it becomes increasingly important to quantify the drilling hazards posed by gas hydrates. To address these concerns, a 1D semianalytical model for heat and fluid transport in the reservoir was coupled with a numerical model for temperature distribution along the wellbore. This combination allowed the estimation of the dimensions of the hydrate-bearing layer where the initial pressure and temperature can dynamically change while drilling. These dimensions were then used to build a numerical reservoir model for the simulation of the dissociation of gas hydrate in the layer. The bottomhole pressure (BHP) and formation properties used in this workflow were based on a real-field case. The results provide an understanding of the effects of drilling through hydrate-bearing sediments (HBS) and of the impact of drilling-fluid temperature and BHP on changes in temperature and pore pressure within the surrounding sediments. It was found that the amount of gas hydrate that can dissociate will depend significantly on both initial formation characteristics and bottomhole conditions) namely, mud temperature and pressure). The procedure outlined in the paper can provide quantitative results of the impact of hydrate dissociation on wellbore stability, which can help in better design of drilling muds for ultradeepwater operations.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Mechanical Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3