Using Machine Learning Method to Optimize Well Stimulation Design in Heterogeneous Naturally Fractured Tight Reservoirs

Author:

Liu Huifeng1,Cui Longlian1,Liu Zundou2,Zhou Chuanyi3,Yao Maotang4,Ma Haoming5,Liu Qi1

Affiliation:

1. CNPC Engineering Technology R&D Company Limited

2. China National Oil & Gas Exploration & Development Company

3. College of Petroleum Engineering, China University of Petroleum, Beijing

4. PetroChina Tarim Oilfield Company

5. Department of Chemical and Petroleum Engineering, University of Calgary

Abstract

Abstract The reservoirs in Kuqa foreland area of Tarim Basin in China are ultra-deep HTHP (High Temperature and High Pressure) naturally fractured sandstone reservoirs. Due to low permeability of the matrix (<0.1mD), stimulation of the natural fractures is the key to well productivity enhancement. Different stimulation techniques with different stimulation strengths have been tried in the last decade, but stimulation effectiveness varied. Therefore, machine learning method is employed to identify the main controlling factors and optimize the well stimulation design. Firstly, geological data, stimulation data, productivity data, etc. for more than 200 wells were used to develop data analysis models, and the major characteristic parameters and their weightiness were determined through machine learning. Afterwards, the stimulation parameters of these wells, including injection rate, fluid volume, proppant volume, etc., were correlated with post-stimulation open flow capacity increments using several regression modeling methods, and the weightiness of these stimulation parameters was determined through machine learning. Cross validation method was used to choose the most accurate and stable model, which was then used to optimize the stimulation parameters of new wells. The model is applied to two test wells. The stimulation technologies and stimulation parameters of the two wells are optimized. Compared with the natural productivity, the productivity after stimulation was increased by 5.5 times and 21.5 times respectively. Machine learning algorithms are used to find an implicit rule from a large amount of data and express the rule with a high dimension nonlinear algorithm equation. It is very useful but seldom has applications in the area of reservoir stimulation. This paper found the controlling parameters of reservoir stimulation in Kuqa foreland area of Tarim Basin through machine learning and successfully used it in well productivity enhancement practices.

Publisher

SPE

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3