Low-Salinity Water, CO2, Alkaline, and Surfactant EOR Methods Applied to Heavy Oil in Sandstone Cores

Author:

Al-Saedi Hasan N.1,Flori Ralph E.2,Al-Jaberi Soura K.3,Al-Bazzaz Waleed4

Affiliation:

1. Missouri University of Science and Technology/Missan Oil Company

2. Missouri University of Science and Technology

3. Missan Oil Company

4. Kuwait Institute for Scientific Research

Abstract

Summary Generally, injecting carbon dioxide (CO2) into oil reservoirs is an effective enhanced oil recovery (EOR) technique that improves oil recovery, but injecting CO2 alone can be compromised by problems, such as early breakthrough, viscous fingering, and gravity override. The base CO2 injection method was improved by water-alternating-gas (WAG) injection with formation water (FW) and with low-salinity (LS) water (LSW), with LSW WAG achieving greater recovery than WAG with FW. This study investigates various combinations of standard waterflooding (with FW); flooding with nonmiscible gaseous CO2; WAG with CO2 and FW and/or LSW; foam flooding by adding a surfactant with CO2; adding an alkaline treatment step; and finally adding an LSW spacer between the alkaline step and the foam. These various EOR combinations were tested on Bartlesville sandstone cores (ϕ of approximately12%, K of approximately 20 md) saturated with a heavy oil diluted slightly with 10% heptane for workability. The ultimate outcome from this work is a “recipe” of EOR methods in combination that uses alkaline, LSW, surfactant, and CO2 steps to achieve recovery of more than 63% of the oil originally in place (OOIP) in coreflooding tests. Combining CO2 injection with surfactant [sodium dodecyl sulfonate (SDS)] to produce a foam resulted in better recovery than the WAG methods. Adding alkaline as a leading step appeared to precipitate the surfactant and lower recovery somewhat. Adding an LSW spacer between the alkaline treatment and the foam resulted in a dramatic increase in recovery. The various cases of alkaline + LSW spacer + surfactant + CO2 (each with various concentrations of alkaline and surfactant) achieved an average improvement of 7.71% of OOIP over the identical case(s) without the LSW spacer. The synergistic effect of the LSW spacer was remarkable. ERRATUM NOTICE:An erratum has been added to this paper detailing addition of an omitted reference.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3