Dynamic Modeling and Design Optimization of Cyclonic Autonomous Inflow Control Devices

Author:

Gurses Sule1,Chochua Gocha1,Rudic Aleksandar1,Kumar Amrendra1

Affiliation:

1. Schlumberger

Abstract

Abstract Autonomous inflow control devices (AICDs) have recently been introduced in the petroleum industry to restrict the production of unwanted fluids, namely water and gas, much more effectively than conventional inflow control devices (ICDs). As with ICDs, AICDs are installed downhole along the completion string to first delay water/gas coning and then restrict their influx, without well intervention, if/when coning such occurs. Unlike ICDs, AICDs selectively choke back water and gas significantly more so than oil. A novel cyclonic AICD was recently developed using computational fluid dynamics (CFD) driven design optimization. The cyclonic AICD's unique internal geometry increases the flow resistance to unwanted fluids based on how their viscosities and densities differ from oil, as initially predicted using CFD and subsequently validated by extensive, carefully controlled single- and two-phase flow tests. The resulting excellent match obtained between CFD and such laboratory tests yielded accurate mathematical models for predicting flow performance over a broad range of flow rates and oil, water and gas properties. The flow performance models were then incorporated into a state-of-the-art dynamic reservoir simulator with multi-segmented wellbore capability to compare the production performance over time for the same well but completed with no ICDs, conventional ICDs, and cyclonic AICDs. A synthetic but realistic three- dimensional (3-D) reservoir model has used that allowed oil, gas and water production. Multiple sensitivity runs were initially performed to optimize the number of compartments using packers for annular isolation, and the number of ICDs per compartment. Once these parameters were optimized, only the ICD type was varied for performance comparison. The results of this systematic, multi-step process, as presented herein, demonstrate that the cyclonic AICD adds significant value to the improvement of oil production by controlling unwanted fluids, such as water and gas, and by preserving the reservoir energy.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3