A Change Point Detection Approach for Intelligent Real-Time Identification of Lost Circulation Events During Drilling Operations

Author:

Cannarile Francesco1,Montoli Stefano1,Giliberto Giuseppe1,Suardi Mauro1,Di Bari Benedetta1,Formato Gaetano1,Farina Daniele1,Magni Gianluca1,Mutidieri Luigi1,Prospero Alberto1,Fidanzi Alessandra1,Dal Forno Luca1,Ricci Maccarini Giorgio1

Affiliation:

1. Eni S.p.a.

Abstract

Abstract Lost circulation is a challenging aspect during drilling operations as uncontrolled flow of wellbore fluids into formation can expose rig personnel and environment to risks. Further, the time required to regain the circulation of drilling fluid typically results in unplanned Non-Productive Time (NPT) causing undesired amplified drilling cost. Thus, it is of primary importance to support drilling supervisors with accurate and effective detection tools for safe and economic drilling operations. In this framework, a novel lost circulation intelligent detection system is proposed which relies on the simultaneous identification of decreasing trends in the paddle mud flow-out and standpipe pressure signals, at constant mud flow-in rate. First, mud flow-out and standpipe pressure signals underlie cubic-spline-based smoothing step to remove background noise caused by the measurement instrument and the intrinsic variability of the drilling environment. To identify structural changes in the considered signals, a nonparametric kernel-based change point detection algorithm is employed. Finally, an alarm is raised if flow-out and standpipe pressure decreasing trends have been detected and their negative variations are below prefixed threshold values. The proposed intelligent lost circulation detection system has been verified with respect to historical field data recorded from several Eni wells located in different countries. Results show that the proposed system satisfactorily and reliably detects both partial and total lost circulation events. Further, its integration with already existing Eni NPT prediction models has led to a significant improvement in terms of events correctly triggered.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3