Laboratory Studies for Design of a Foam Pilot for Reducing Gas Channeling from Gas Cap in Production Well in Messoyakhskoye Field

Author:

Saifullin Emil1ORCID,Zhanbossynova Shinar2,Zharkov Dmitrii2,Yuan Chengdong1,Varfolomeev Mikhail1,Zvada Maiia3

Affiliation:

1. Kazan Federal University (Corresponding author)

2. Kazan Federal University

3. Gazpromneft STC

Abstract

Summary This paper highlights the difference between foam injection for gas blocking in production well and injection well and emphasizes the use of polymer enhanced foam. Moreover, this paper shows systematic experimental methods for choosing suitable foam systems for gas blocking in production well considering different factors, which provides a guide regarding what kinds of foaming agents and polymer stabilizers should be used and how to evaluate them for designing a pilot application. The target in this work is the Vostochno-Messoyakhskoye field, operated by Gazpromneft, which is currently experiencing gas channeling from the gas cap in production wells because of strong heterogeneity. Foam has long been considered as a good candidate for gas blocking. However, foam injection for gas blocking in production wells is different from that in injection wells, which requires a long-term impact on gas-saturated highly permeable areas without significantly affecting the phase permeability of oil in the reservoir. Therefore, for gas blocking in production well, a long half-life time of foam is required to sustain stable foam because a continuous shear of surfactant solution/gas cannot be achieved as in injection wells. Thus, reinforced foam by polymer (polymer-foam) is chosen. Four polyacrylamide polymer stabilizers and five anionic surfactants were evaluated using bulk test to determine foaming ability, foam stability, and effect of oil by comparing foam rate and half-life time to determine the suitable foam system with optimal concentrations of reagents. Furthermore, filtration experiments were conducted at reservoir conditions to determine the optimal injection mode by evaluating apparent viscosity, breakthrough pressure gradient, resistance factor, and residual resistance factor. Polymer can significantly improve half-life time (increase foam stability), and the higher the polymer concentration, the longer the half-life time. But simultaneously, a high polymer concentration will increase the initial viscosity of the solution, which not only decreases the foam rate but also increases difficulties in injection. Therefore, an optimal polymer concentration of about 0.15–0.2 wt% is determined considering all these influences. Filtration experiments showed that the apparent viscosity in the core first increased and then decreased with foam quality (the volumetric ratio of gas to total liquid/gas flow). The optimal injection mode is coinjection of surfactant/polymer solution and gas to in-situ generate foam at the optimal foam quality of about 0.65. Filtration experiments on the different permeability cores showed that the gas-blocking ability of polymer-foam is better in high-permeability cores, which is beneficial for blocking high-permeability zone. It should also be noted that under a certain ratio of oil-to-foam solution (about lower than 1 to 1), the presence of high-viscosity crude oil slowly decreased the foam rate with increasing oil volume, but significantly increased the half-life time (i.e., foam stability which is favorable for foam treatment in production well).

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

Reference32 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3