Impact of Acrylate and 2-Acrylamido-Tertiary-Butyl Sulfonic Acid Content on the Enhanced Oil Recovery Performance of Synthetic Polymers

Author:

Beteta A.1,Nurmi L.2,Rosati L.3,Hanski S.2,McIver K.1,Sorbie K.1,Toivonen S. K.2

Affiliation:

1. Heriot-Watt University

2. Kemira Oyj

3. Kemira Chemicals Inc.

Abstract

Summary Polymer flooding is a mature enhanced oil recovery (EOR) technology that has seen increasing interest over the past decade. Copolymers of acrylamide (AMD) and acrylic acid (AA) have been the most prominent chemicals to be applied, whereas sulfonated polymers containing 2-acrylamido-tertiary-butyl sulfonic acid (ATBS) have been used for higher temperature and/or salinity conditions. The objective of this study was to generate guidelines to aid in the selection of appropriate polyacrylamide chemistry for each field case. Our focus was in sandstone fields operating at the upper end of AA-AMD temperature tolerance, where there is a decision as to whether sulfonation is required. The performance of the polymer throughout the whole residence time in the reservoir was considered because the macromolecule can undergo some changes over this period. Several key properties of nine distinct polymer species were investigated. The polymers consisted of AA-AMD copolymers, AMD-ATBS copolymers, and AMD-AA-ATBS terpolymers (up to 15 mol% ATBS). The polymer solutions were studied both in their original state as they would be during the injection (initial viscosity, initial adsorption, and in-situ rheology), as well as in the state in which they are expected to be after the polymer has aged in the reservoir (i.e., in a different state of hydrolysis with corresponding changes in viscosity retention and adsorption after aging for various time periods). We note that the combination of viscosity retention and adsorption during the in-situ aging process has not been typically investigated in previous literature, and this is a key novel feature of this work. Each of the above parameters has an impact on the effectiveness and the economic efficiency of a polymer flooding project. The majority of the work was carried out in seawater (SW) at a temperature of 58°C. Under these conditions, AMD-AA samples showed similar solution viscosity at 5 to 30% AA. When the AA-AMD polymer solutions were aged at elevated temperature, the AA content steadily increased because of hydrolysis reactions. When the AA content was 30 mol% or higher, the viscosity started to decrease, and the adsorption started to increase as the polymer solution was aged further. Thermal stability improved when ATBS was included in the polymer structure. In addition, sulfonated polyacrylamide samples showed constant initial viscosity yields and decreasing initial adsorption with increasing ATBS content. The samples showed that the maximum observed apparent in-situ viscosity increased when the bulk viscosity and relaxation time of the solution increased. The information generated in this study can be used to aid in the selection of the most optimal polyacrylamide chemistry, which may not necessarily be the standard 30% AA and 70% AMD copolymer, for sandstone fields operating with moderate/high salinity brines at the upper end of AA-AMD temperature tolerance.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3