Confirmation of Polymer Viscosity Retention at the Captain Field Through Wellhead Sampling

Author:

Johnson Geoffrey1,Hesampour Mehrdad2,Toivonen Susanna2,Hanski Sirkku2,Sihvonen Stina2,Lugo Nancy1,McCallum Jennifer1,Pope Michael1

Affiliation:

1. Ithaca Energy

2. Kemira Oyj

Abstract

Abstract The Ithaca-operated Captain field is located in Block 13/22a in the U.K. sector of the North Sea, 130 km northeast of Aberdeen, in a water depth of 360 ft. The Captain Field has an adverse mobility ratio across all the producing reservoirs and so has undergone improved oil recovery by polymer flooding since 2011 using Anionic polyacrylamide (HPAM) in liquid form. This paper presents recent offshore wellhead sampling from the Captain facility that confirms high polymer solution viscosity retention from a producing well, even after significant mechanical degradation through the Electrical Submersible Pumps (ESP), which is used for artificial lift. The continuing commercial success of the Captain Field polymer flood is underpinned by maintaining polymer viscosity throughout the system. High polymer returns, combined with declining oil rates, may result in the continued operation of these wells to be unattractive. This paper summarises the data used to shut-in mature wells that are producing polymer to the surface, to enable the polymer flood to continue displacing oil to offset production wells. Samples were collected from the wellhead in oxygen free conditions into pressurized cylinders. The measurements in laboratory were taken inside a glove box to avoid oxygen ingress. The absence of oxygen was confirmed through measurements of dissolved oxygen and redox potential. Viscosity of the solutions have been measured with Brookfield viscometer inside the glove box and the results were compared to the expected viscosity from fresh non-degraded polymer solution. The expected viscosity was determined using a concentration – viscosity curve of a fresh polymer in synthetic Captain brine. Polymer solution concentration is measured on-site using KemConnect™ EOR, a time resolved fluorescence method, the collected samples were subsequently confirmed with size exclusion chromatography (SEC) in the laboratory. The polymer concentrations measured from these wellhead samples with KemConnect™ EOR were in the region of 700-900 ppm. Previously collected downhole viscosity samples confirmed >70% viscosity retention prior to being produced through the ESP, while 50-80% of the original viscosity was found to be retained after production through the ESP to the surface facilities under anaerobic conditions for the range of concentrations sampled. These findings demonstrate the resilience of the polymer product to degradation in a real-world operational setting. It also provides data that may be used to estimate the expected downhole polymer solution viscosity from wellhead samples for defined operating conditions. The ability to estimate polymer solution downhole viscosity retention from wellhead samples provides a simpler and less expensive method of estimating viscosity retention than downhole sampling, which is especially useful for wells that do not have downhole access for sample collection.

Publisher

SPE

Reference9 articles.

1. Dupuis, G. and Nieuwerf, J. 2020. A Cost-Effective EOR Technique To Reduce Carbon Intensity With Polymer Flooding and Modular Skids. Published in the Journal of Petroleum Technology, August2020. https://pubs.spe.org/en/jpt/jpt-article-detail/?art=7545

2. Espinosa . 2018. Dynamic Field Rheology, Filterability and Injectivity Characterization Using a Portable Measurement Unit. SPE-190329-MS. Presented at the SPE Improved Oil Recovery Conference at Tulsa, Oklahoma, April 14-18.

3. Jackson A C . Surfactant Stimulation Results in Captain Field to Improve Polymer Injectivity for EOR. SPE-195747-MS. Presented at the SPE Offshore Europe Conference and Exhibition. Aberdeen, UK, September 3-6.

4. Johnson G. and HesampourM., . 2021, A novel sampling and testing procedure to confirm Polymer Flood viscosity retention at the Captain Field. EAGE- IOR conference, 19-21 April 2021

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3