Application of a Regression-Based EOS PVT Program to Laboratory Data

Author:

Coats K.H.1,Smart G.T.1

Affiliation:

1. Scientific Software-Intercomp

Abstract

Summary An equation-of-state (EOS)-based PVT program was applied to match laboratory PVT data for three published and nine additional reservoir fluid samples. This paper includes laboratory test data for the nine samples and describes PVT program features, especially regression, that we find conducive to rapid determination of EOS parameter values needed to match data. With regression, both the parameter values needed to match data. With regression, both the Peng-Robinson (PR) and Zudkevitch-Joffe-Redlich-Kwong (ZJRK) EOS Peng-Robinson (PR) and Zudkevitch-Joffe-Redlich-Kwong (ZJRK) EOS give comparable and generally good agreement with laboratory data. Without regression or significant adjustment of EOS parameters, neither EOS adequately predicts observed reservoir fluid PVT behavior. Our EOS tuning uses a small degree of C7+ fraction splitting. The agreement of these EOS results with data compares favorably with that obtained in previously published studies that used extensive C7+ splitting. Introduction A recent trend in compositional simulation is the use of an EOS, as opposed to independent correlations, to calculate K-values and equilibrium-phase properties. An important prerequisite in meaningful use of the EOS-based prerequisite in meaningful use of the EOS-based compositional model is satisfactory agreement between EOS results and laboratory PVT test data relevant to the reservoir fluid and recovery process. A number of studies report comparisons of cubic EOS and laboratory PVT results for a wide variety of reservoir fluids and conditions. Most of these studies emphasize the C7+ characterization as the key element in attaining agreement between EOS and laboratory results. Some studies use more than 40 components that result from splitting the C7+ fraction. Some authors imply a predictive EOS capability provided one EOS parameter predictive EOS capability provided one EOS parameter is adjusted to match the reservoir fluid saturation pressure. The work reported here reflects our experience that the EOS is generally not predictive and extensive splitting of the C7+ fraction to match laboratory data is generally unnecessary. We indicate that more of the available laboratory data than were frequently used (or reported) in past studies should be used in evaluating and tuning an EOS. The reservoir fluid studies presented illustrate the capability and efficiency of multivariable, nonlinear regression in seeking agreement between EOS and observed PVT results. PVT results. We do not dismiss "proper" C7+ characterization as a necessary element in tuning an EOS. Rather, we support a philosophy of minimal splitting followed by adjustment, using regression, of the heaviest (plus) fraction's two EOS parameters, generally denoted by and . We describe regression-based PVT program features that we feel contribute to time-efficient tuning of an EOS, which is necessary before its use in field-scale simulation. Laboratory data given for six oil and three retrograde gas condensate samples include reservoir temperature expansions, surface separations, N2 reservoir fluid behavior, and one set of multiple-contact data. Results are presented for three additional fluids with data reported in the literature. Generalizations regarding the regression procedure and results, based on these 12 fluid systems and a larger number of unreported fluid studies, are stated where possible or warranted.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3