Azimuthally Resolved Wellbore Strain Measurements: A Powerful New Fracture Diagnostics Method

Author:

Zheng Shuang1,Elliott Brendan1,Sharma Mukul1

Affiliation:

1. The University of Texas at Austin

Abstract

Abstract In this paper, we present a novel fracture diagnostic method to determine the geometry of multiple propagating fractures. The method relies on the measurement of the Azimuthally Resolved WEllbore Strain Tensor (ARWEST) as a function of time at multiple locations in an observation well. A pad-scale fracturing simulator is used to simulate dynamic fracture propagation in a treatment well. The geometry of the monitoring wellbore is represented with a very fine (millimeter scale) computation mesh to capture the impact of the propagating fractures on the monitoring wellbore. The axial and radial strain at different locations along the wellbore is computed as a function of time as the fractures approach the observation wellbore. These measurements together with the wellbore pressure response are interpreted to obtain the height, length and width of the fractures as well as the cluster efficiency of the stage. The emergence of peaks in the strain and pressure monitoring data clearly detects the arrival of each fracture. As the fracture approaches the monitoring well, the tensile strain measured within the wellbore in the axial direction increases, the compressive strain in the radial direction increases and the sealed wellbore pressure increases. As the fracture intersects the wellbore, the tensile strain in axial direction decreases and compressive strain in the radial direction decreases. The sealed wellbore pressure further increases. When the treatment is complete, both the magnitude of the monitored strain and pressure decrease. The major axis of the oval wellbore is oriented towards the tip of the propagating fracture. The wellbore ovality, therefore, provides a direct measure of the location of the fracture tip in 3-D. The results obtained from these azimuthal wellbore measurements can be interpreted with the aid of the simulations to provide a new low cost facture diagnostic method. This new 3-D fracture diagnostics method allows us to infer (a) the location of the fracture front, (b) estimate the geometry (length, height, width) and (c) determine the cluster efficiency by monitoring the strain tensor as a function of time along an observation well. The results presented here will allow operators to integrate the measured casing strain tensor and the sealed wellbore pressure data. Such a diagnostic method opens the possibility of real-time fracture diagnostics and optimization.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3