Feasibility of Foam-Enhanced Water-Gas Flooding for a Low-Permeability High-Fractured Carbonate Reservoir. Screening of Foaming Agent and Flooding Simulation

Author:

Derevyanko V. K.1,Bolotov A. V.1,Minkhanov I. F.1,Varfolomeev M. A.1,Usmanov S. A.1,Saifullin E. R.1,Egorov A. N.2,Sudakov V. A.1,Zhanbossynova S1,Sagirov R. N.1

Affiliation:

1. Department of reservoir engineering, Kazan Federal University, Kazan, Russian Federation

2. CJSC, Aloil, Bavly, Russian Federation

Abstract

Abstract The carbonate reservoirs of the Alekseevskoye field (Russia, Republic of Tatarstan) are complicated by high heterogeneity and the presence of fractures, which make development difficult due to early water or gas breakthrough depending on the injected agent, as well as low of the productive horizon. To increase sweep efficiency and introduce fractured reservoirs into development, it is necessary to use gas enhanced oil recovery (EOR) technologies. To find the optimal technology in terms of technological complexity and efficiency, three technologies were compared: Water Injection (WI), Water-Alternating Gas (WAG), and Foam Assisted Water-Alternating Gas (FAWAG). Series of core-flooding tests were implemented under reservoir conditions on carbonate cores, and cores with artificial fractures, saturated with original reservoir fluids. For FAWAG method compatible with high-mineralization water surfactant was chosen. Total recovery factor for each test was calculated. It was equal to 33%, 76% and 53% respectively for WI, WAG and SWAG, on the original core models. Therefore, WAG and SWAG were chosen as most effective techniques to improve oil recovery for in comparison with CWI. In artificially fractured cores, the WAG method recovery rate was 40%; subsequent injection of a foaming active substance mixed with FAWAG formation water proved effective, increasing the oil recovery rate to 47% due to partial blockage of the fracture.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3