The Density of Oil/Gas Mixtures: Insights From Molecular Simulations

Author:

Mehana Mohamed1,Fahes Mashhad2,Huang Liangliang2

Affiliation:

1. University of Oklahoma and Suez University

2. University of Oklahoma

Abstract

Summary Gravity segregation of reservoir fluids is mainly controlled by density. Although most gases used in the field for enhanced oil recovery (EOR) result in a reduction in density upon mixing with the oil, carbon dioxide (CO2) can result in an increase of the density upon mixing. Experimental observations confirmed this behavior. In addition, field operations report an early breakthrough for CO2 flooding, which is related to the associated gravity segregation caused by the abnormal density behavior. However, the molecular interactions at play that have an impact on the observed macroscopic behavior have not been well-understood or deeply investigated. Molecular simulation of methane, propane, and CO2 mixtures with octane, benzene, pentane, and hexadecane is studied up to the miscibility limit at temperatures up to 260°F (400 K), and pressures up to 6,000 psi (400 bar). There is a proximity between the values of density obtained through molecular simulations and those obtained through experimental work and equation-of-state (EOS) methods. It is evident that oil/CO2 mixtures sustain their density to a higher gas mole percentage compared with other gases, with the density in some cases exceeding the pure liquid-hydrocarbon density even when gas density at those conditions is lower. Our results have demonstrated that the proposed mechanisms in literature—namely, intermolecular Coulombic and induced dipole interactions and the stretching of the alkane molecules—might not be the key to understanding the oil/CO2 density behavior. However, the molecular size of the gas seems to play an important role in the density profile observed.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3