20 Years of Horizontal Multistage Completions: A Summary of Industry Evolution in Unconventional and Conventional Plays

Author:

Casero Alberto1

Affiliation:

1. bp

Abstract

Abstract In the past two decades, the advent of the Shale Gas Revolution (SGR) was made possible by the visionary idea that hydrocarbons contained in ultra-low permeability source rocks could be extracted using available technology. Usually, these hydrocarbons take geological time to migrate to higher permeability reservoir rocks until the right structural conditions evolve to extract as recoverable resources. However, paradigm shifts in drilling and completion engineering have enabled unlocking resources from these ultra-tight formations. The innovative idea at the base of this industrial revolution was the combination of horizontal well drilling and hydraulic fracturing, which allowed increasing the surface area available for hydrocarbon flow and overcame the slow and shallow hydrocarbon release from the source rock. This approach can be considered as a bridge between petroleum engineering based on radial diffusivity equation and mining engineering based on physically accessing and extracting the resource. To achieve the high number of hydraulic fractures needed for economical production, different execution techniques evolved and developed in what is known as horizontal multistage fracturing (HMSF) completions. Although HMSF is indescribably linked to SGR, it was surprisingly applied in tight gas formation and offshore sand control applications more than 30 or 40 years ago. SGR contributed to the fast development of new innovative systems engineered and deployed at scale all over North America land operations and was subsequently exported internationally in conventional, unconventional, land, and offshore applications. This paper will cover the most common HMSF completion systems types with a primary focus on unconventionals. It will encompass the evolution of these systems over the past several decades. It will also explore the opportunity case for conventional, and high permeability plays through a series of theoretical and real examples.

Publisher

SPE

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3