Foamy-Oil-Viscosity Measurement

Author:

Alshmakhy Ahmed1,Maini Brij B.1

Affiliation:

1. University of Calgary

Abstract

Summary Foamy-oil viscosity is a controversial topic among researchers regarding what happens to the oil viscosity when the solution gas starts coming out of solution because of decreasing pressure and the released gas starts migrating with the oil in the form of dispersed gas bubbles. For conventional oils, below the true bubblepoint pressure, the oil viscosity increases as the gas freely evolves from the oil. For foamy oils, it has been suggested that the apparent oil viscosity remains relatively constant or perhaps declines slightly between the true bubblepoint and a characteristic lower pressure, called pseudobubblepoint, which is the pressure at which the gas starts separating from the oil. Below this pressure, the viscosity increases, reaching the dead-oil value at atmospheric pressure. However, it is a well-known fact in dispersion rheology that the viscosity of dispersion is higher than the viscosity of the continuous phase. Therefore, the concept of foamy-oil viscosity being lower than the oil viscosity is counterintuitive. It is likely that the apparent viscosity for flow of foamy oil in porous media is not the true dispersion viscosity because of the size of dispersed bubbles being comparable to the pore sizes. This study investigates this issue by measuring the foamy-oil viscosity under varied conditions. The effect of several parameters, such as flow rate, gas volume fraction, and type of viscometer employed, on foamy-oil viscosity was evaluated experimentally. Three different viscosity-measurement techniques, including Cambridge falling-needle viscometer, capillary tube, and a slimtube packed with sand, were used to measure the apparent viscosity of gas-in-oil dispersions. The results show that the type of measuring device used has a significant effect. The results obtained with Cambridge falling-needle viscometer correlate better with the observed behaviour in the sand-packed slimtube than the capillary viscometer results. Overall, the apparent viscosity of foamy oil was found to be similar to live-oil viscosity for a range of gas volume fractions.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3