A Workflow to Derive Rock Mechanics Correlations and Stress Profile by the Integration of Dynamic and Static Formation Evaluation Data

Author:

Qatari Ammar1

Affiliation:

1. Saudi Aramco

Abstract

Abstract Rock mechanics utilizes empirical formulas which are based on studies of certain environments. The shortcoming of such criteria is having estimations of rock physical properties with high uncertainty and not field/formation specific. The objective of this paper is to apply a core-log integration to convert dynamic mechanical properties captured from formation evaluation logs and calibrate them with core static data to generate a continuous profile of data with low uncertainty and generate correlations applicable to the specific physical environment. To obtain proper rock mechanical correlations, building a mechanical earth model (MEM) calibrated with core data and stimulation data is essential. Multiple wells drilled in a certain sandstone field with rock mechanical physical tests are analyzed. Multi-arm caliber data is also put in use to establish knowledge about in-situ stress directions. The procedure starts with gathering and filtering acoustic slowness & shear, formation pressure, density, and oriented multi-arm caliper logs. Next, calibration of dynamic to core static mechanical data collected in the lab is established. The geomechanical analysis includes an understanding of the state of stresses in a chosen reservoir along with rock elastic and failure properties. The complied data is then integrated using different workflows to develop Mechanical Earth Model (MEM). The intended rock mechanics correlations include elastic constants (Young's Modulus and Poisson's ratio), and rock failure parameters. Once Mechanical Earth Model (MEM) is established, dynamic logging data and core static data are correlated to produce key rock mechanics elements that are field and formation specific. The correlations include Young's Modulus, Poisson's Ratio, Unconfined Compressive Strength (UCS) correlation, and Friction Angle (FANG) correlation. A range of each rock mechanic element is also highlighted for the specific environment showcasing the limits expected for collapse and fracture. Ultimately, stress profile is generated with low uncertainty highlighting magnitudes of maximum and minimum horizontal stresses along with the given interval.

Publisher

SPE

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3