Superior Transport Capabilities of Neutrally Buoyant Proppants in Slickwater Fluids Deliver Step-Change Increase in the Conductive Fracture Area of Unconventional Wells

Author:

Brannon Harold1

Affiliation:

1. Sun Specialty Products

Abstract

Abstract Technological advancements have recently been directed toward development and optimization of horizontal completions in unconventional reservoirs, with the ultimate objective of increasing asset performance and value. Unconventional plays are being completed with ever-longer laterals, tighter stage spacing, and high rate slickwater applications designed with increasingly larger volumes of sand to create increased reservoir contact area for greater hydrocarbon recovery. Success is predicated upon overcoming the limited transport capabilities of slickwater. The benefit of higher injection rates employed to enhance proppant transport is soon lost as the lateral velocity declines exponentially with distance from the wellbore, allowing the sand to fall rapidly to the bottom of fractures, resulting in propping only a fraction of the created fracture area. While there are advantages to the use of slickwater and sand for unconventional applications, the transport characteristics inherent to slickwater/sand slurries suggest significant limitations to step-changes in hydrocarbon recovery. Near-neutrally buoyant, ultra-lightweight proppant is a proven solution to make productive the otherwise non-propped area. Several previous studies in parallel plate slot flow models have shown ULWP-1.05 is transported well in slickwater, whereas sand settles rapidly to form a dune even at high flow rates. Such behavior is intuitive given the near-neutrally buoyant ULWP has an Apparent Specific Gravity of 1.05, in contrast to the 2.65 ASG of sand and the 1.0 ASG of water. Two new proppant transport models have recently been introduced, including a slot with multiple fracture branches and, a 3D complex network flow model designed to imitate flow through a lateral wellbore into a complex fracture network. In both, the ULWP-1.05 was observed to be transported near-homogeneously with the fluid to the extremities of the apparatus. Conversely, small mesh sand tended to stay in the lower sections of the models and to deposit prior to reaching the extremities. As a prelude to ULWP-1.05 field application in Permian Basin extended length horizontal wells, proppant transport and fracture conductivity data for the near-neutrally buoyant ULWP-1.05 were used in fracture models to optimize proppant placement for maximizing conductive fracture area, with iterations to optimize well performance in production simulations. A desired outcome of this endeavor is the development and validation of an optimized stimulation design exhibiting materially enhanced well performance. This paper includes analyses and observations from the proppant transport testing, fracture conductivity testing, discussion of the subsequent fracture designs and production simulations, and comparison of the production simulations with production experienced in field applications. Performance of slickwater fracs with sand alone and, with both sand and near neutrally buoyant ULWP are compared. Lessons learned may be used to substantially increase the conductive fracture area of unconventional wells, optimizing production performance and stimulated reservoir recovery efficiency.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3