Laser Gun: The Next Perforation Technology

Author:

Batarseh Sameeh1,San Roman Alerigi Damian1,Al Obaid Omar1,Othman Haitham1

Affiliation:

1. Saudi Aramco

Abstract

Abstract Establishing communication between the wellbore and hydrocarbon-bearing formations is critical to ensure optimal production. Laser is a new technology that utilizes the power of light to perforate rocks. The technology is non-damaging, safe (non-explosive), and affords precise control over the perforation's geometry (size and shape). The process creates an enhanced tunnel that improves the flow and increases production. The technology has been successfully demonstrated in the lab environment. The results are used to develop a field deployment strategy. In the field, the laser source will be mounted on a coiled tubing unit on the surface and transmitted downhole via optical fibers. Downhole, the beam is out-coupled and directed to the target using an optical bottom hole assembly (oBHA). This tool combines optical and mechanical components to control the beam and produce multipole shots per foot as needed to create the desired perforation network. High-power laser perforation is the next new intelligent perforation generation that will change current well perforation. Laser-rock interaction drives in the transformation of electromagnetic energy into thermal energy. This results in a highly localized and controllable temperature surge that can melt or vaporize the rocks. These properties make the technology a unique alternative to current perforation techniques based on shaped charge guns. The thermal process induced by the laser enhances the flow properties of the rock, especially in tight formations. Laser perforation has been tested on all types for rocks including unconventional tight sands. This has been proven through extensive pre- and post-perforation characterization over the last two decades. This work presents the development and evolution of the high-power laser tools for subsurface applications. These tools provide innovative and non-damaging alternatives to current downhole technologies. In the lab, the laser technology has been proven to improve the flow properties; thus, it can improve communication between the wellbore and formation. To achieve this efficiently in the field, it is necessary to develop different tool designs and configurations, manufacture prototypes, conduct extensive tests, and optimize each part before upscale for field operations. The laser source is mounted in a coil tubing rig at the surface; the coil contains the optical fiber cable used to convey the energy to the downhole tool. The tool combines mechanical and optical components to transform, control, and direct the laser beam. The design and configuration of each tool assembly varies depending on the targeted application. For example, the perforation tool converts and splits the beam into several horizontal beams; whereas the drilling tool emits a straight beam with controlled size for deeper penetration. They also incorporate purging capabilities to circulate fluids to clean the hole from the debris and carry the cuttings. The entire assembly must be made to fit in slim holes as small as four inches. And finally, ruggedized to operate in a complex environment with high pressure and temperature. The technology improves reach and provides versatility in a compact and environmentally friendly manner. For example, it is a waterless technology when it is used for fracturing, and a non-explosive based perforation when it is used to perforate. The unique features of the technology enable a precise, controlled, and oriented delivery of energy in any direction, regardless of the reservoir stress orientation and magnitude. Thus, it enhances reach to produce from pay zones that are bypassed by current conventional technologies and practice. The motivations to search alternative technologies are the advancement of technologies, including high power lasers, and the need to enhance several applications in deeper wells in an environmentally friendly manner.

Publisher

SPE

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3